Spring 2025 Courses

3180. Mathematics for Machine Learning

3.00 credits

Prerequisites: MATH 2110Q and 2210Q. Recommended preparation: MATH 3160.

Grading Basis: Graded

Applications of elementary linear algebra, probability theory, and multivariate calculus to fundamental algorithms in machine learning. Topics include the theory of orthogonal projection, bilinear forms, and the spectral theorem to multivariate regression and principal component analysis; optimization algorithms such as gradient descent and Newton's method applied to logistic regression; and convex geometry applied to support vector machines. Other topics include Bayesian probability theory and the theory of convolution especially as applied to neural networks. Theory illustrated with computer laboratory exercises.


Last Refreshed: 06-DEC-24 05.20.19.636277 AM
To view current class enrollment click the refresh icon next to the enrollment numbers.
Term Class Number Campus Instruction Mode Instructor Section Schedule Location Enrollment
Spring 2025 6956 Storrs In Person Lee, Kyu-Hwan 001 TuTh 9:30am‑10:45am
MONT 319 34/30
Spring 2025 12380 Stamford In Person Kellinsky-Gonzalez, Kevin 801 We 3:35pm‑6:05pm
DWTN 129 16/40