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You may use any result that we proved in class (unless the question
directly asks you to prove this result!).

1. Let f1, f2 : X → Y be continuous maps from a topological space X to a
Hausdorff space Y . Show that the set S of points {x ∈ X | f1(x) = f2(x)}
where f1 and f2 are equal is a closed set.

2. (a) Prove the following statement.

Tube Lemma: Assume that Y is compact, and that Uα for α ∈ A
is a collection of open subsets of X × Y that covers {x} × Y for
some x ∈ X, i.e. {x} × Y ⊂

⋃
α∈A Uα.

Then there is a finite subcollection U1, . . . , Un with Ui = Uαi for
some αi ∈ A, and an open set V ⊂ X such that U1, . . . , Un covers
V × Y , i.e. V × Y ⊂ U1 ∪ · · · ∪ Un.

(b) Prove directly from the definition that if X,Y are compact, then
X × Y is compact. Hint: Use the Tube Lemma.

3. Assume that X is a path-connected space with basepoint x0 ∈ X. Let
A ⊂ X be a path-connected subset with x0 ∈ A. Let p : (X̃, x̃0) →
(X,x0) be a base-point preserving covering, and let Ã = p−1(A) be
the preimage of A.

Show that if X̃ is path-connected and if the natural map i∗ : π1(A)→
π1(X) is surjective, then Ã is path-connected.

4. Determine, with proof, the number of connected 2:1-coverings of the
wedge sum S1 ∨ S1 ∨ S1.

5. Let X = [0, 1]2/∼ be the quotient of the the unit square [0, 1]2 ⊂ R2

modulo the equivalence relation generated by

(t, 0) ∼ (1, t) ∼ (1− t, 1) ∼ (0, t)

for all 0 ≤ t ≤ 1. (One could describe this via the polygon representa-
tion 〈a|aaaa−1〉.)
Prove that π1(X) = Z/2Z. Justify your steps carefully.
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1. Let f1, f2 : X → Y be continuous maps from a topological space X to a

Hausdorff space Y . Show that the set S of points {x ∈ X | f1(x) = f2(x)}
where f1 and f2 are equal is a closed set.

2. (a) Prove the following statement.

Tube Lemma: Assume that Y is compact, and that Uα for α ∈ A
is a collection of open subsets of X × Y that covers {x} × Y for
some x ∈ X, i.e. {x} × Y ⊂

⋃
α∈A Uα.

Then there is a finite subcollection U1, . . . , Un with Ui = Uαi for
some αi ∈ A, and an open set V ⊂ X such that U1, . . . , Un covers
V × Y , i.e. V × Y ⊂ U1 ∪ · · · ∪ Un.

(b) Prove directly from the definition that if X,Y are compact, then
X × Y is compact. Hint: Use the Tube Lemma.

3. Prove that a compact subset S of a Hausdorff space X is closed. Give
an example where this statement fails in case X is not Hausdorff.

4. Show that the product of paths is well-defined on homotopy classes.

5. Let p : X → Y be a covering map, let f : B → Y be a continuous map
where B is connected. Prove that if two lifts f1, f2 : B → X of f agree
at a single point b ∈ B, then f1 = f2.


