PRELIM 5310 PRELIM (Topology) January 2012

Justify all your steps rigorously. You may use any results that you know, unless the question asks you to prove essentially the same result.

- 1. Decide whether each of the following statements is correct. If yes, give a proof, otherwise, give a counterexample (without proof). Here X and Y are topological spaces.
 - (a) Let $C \subset X$ be a closed subset. Then C is equal to the closure of its interior: $C = \overline{\text{int}C}$.
 - (b) If $f: (X, x) \to (Y, y)$ is surjective and continuous, then the induced map $f_*: \pi_1(X, x) \to \pi_1(Y, y)$ is surjective.
- 2. Assume that X, Y are connected. Prove that $X \times Y$ is connected.
- 3. (a) Let X be a Hausdorff space, and let $C_1, C_2 \subset X$ be disjoint compact subsets. Prove that there exist disjoint open subsets $U_1, U_2 \subset X$ with $C_1 \subset U_1$ and $C_2 \subset U_2$.
 - (b) Assume that X is compact and Hausdorff, and assume that $f: X \to Y$ is a continuous and closed surjective map. Prove that Y is Hausdorff.
- 4. Let $X \subset \mathbb{R}^3$ denote the union of the unit sphere in \mathbb{R}^3 with the unit disc in the *xy*-plane, i.e.:

$$X = \left\{ (x, y, z) \, \middle| \, x^2 + y^2 + z^2 = 1 \right\} \cup \left\{ (x, y, z) \, \middle| \, x^2 + y^2 \le 1, z = 0 \right\}.$$

Compute $\pi_1(X)$.

- 5. Let X be a compact and connected manifold, and let $p: \widetilde{X} \to X$ be a connected covering.
 - (a) Prove that for $x, x' \in X$, the sets $p^{-1}(x)$ and $p^{-1}(x')$ have the same cardinality. (*Note:* Two sets A, B have the same cardinality iff there is a bijection $A \to B$.)
 - (b) Prove that \widetilde{X} is compact if and only if the set $p^{-1}(x)$ is finite.
- 6. Assume that (X, x_0) is connected, locally path-connected and semilocally simply-connected. Let $p: (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ be a connected covering. Show that the stabilizer of \tilde{x}_0 of the action of $\pi_1(X, x_0)$ on $p^{-1}(x_0)$ is equal to the subgroup in $\pi_1(X, x_0)$ corresponding to p under the Galois correspondence. (*Note*: Given an action of a group G on a set S, the stabilizer of an element $s \in S$ is the subgroup $\{g \in G \mid g.s = s\}$.)