Justify all your steps. You may use any results that you know unless the question says otherwise, but don’t invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

1. (10 pts)
 (a) (7 pts) For \(n \geq 3 \), determine with proof the conjugacy classes of the dihedral group of order \(2n \). (Hint: Separately consider even \(n \) and odd \(n \).)
 (b) (3 pts) Let \(C_n \) be the number of conjugacy classes in the dihedral group of order \(2n \). Compute \(\lim_{n \to \infty} \frac{C_n}{n} \).

2. (10 pts) Let \(p \) the smallest prime dividing the order of a finite group \(G \). Prove that if \(H \) is a subgroup of \(G \) with index \(p \) then \(H \) is a normal subgroup. (Hint: Look at the left multiplication action of \(G \) on the left cosets of \(H \).)

3. (10 pts) View \(\mathbb{Q} \) and \(\mathbb{Z} \) as additive groups. For \(a \in \mathbb{Z} \), set \(\varphi_a : \mathbb{Q} \to \mathbb{Q} \) by \(\varphi_a(t) = 2^a t \).
 (a) (4 pts) Show that \(\varphi_a \) is an automorphism of (the additive group) \(\mathbb{Q} \) for each \(a \in \mathbb{Z} \) and show \(\varphi : \mathbb{Z} \to \text{Aut}(\mathbb{Q}) \) given by \(a \mapsto \varphi_a \) is a homomorphism of groups.
 (b) (4 pts) Set \(G = \mathbb{Q} \rtimes_\varphi \mathbb{Z} \), a semi-direct product. In \(G \) let \(H = \{(m,0) : m \in \mathbb{Z}\} \) and \(x = (0,1) \). Prove that \(xHx^{-1} \subset H \).
 (c) (2 pts) Show that \(x = (0,1) \) is not an element of the normalizer \(N_G(H) \) of \(H \) in \(G \).

4. (10 pts)
 (a) (4 pts) Define a Euclidean domain and prove all ideals in a Euclidean domain are principal.
 (b) (4 pts) Prove \(F[X] \) is a Euclidean domain when \(F \) is a field.
 (c) (2 pts) Prove \(\mathbb{Z}[X] \) is not a Euclidean domain.

5. (10 pts)
 (a) (2 pts) For a commutative ring \(R \) and \(R \)-module \(M \), define what it means to say \(M \) is a cyclic \(R \)-module.
 (b) For any matrix \(A \in M_n(R) \), we can make \(\mathbb{R}^n \) into an \(R[t] \)-module by declaring that for any polynomial \(f(t) = c_0 + c_1 t + \cdots + c_d t^d \) in \(R[t] \) and vector \(v \) in \(\mathbb{R}^n \), \(f(t)v = f(A)v = (c_0 I + c_1 A + \cdots + c_d A^d)v \).
 Determine, with explanation, whether \(\mathbb{R}^n \) is a cyclic \(R[t] \)-module for each of the following choices of \(A \). If it is a cyclic \(R[t] \)-module, then find an \(R[t] \)-generator:
 i. (4 pts) \(A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) on \(\mathbb{R}^2 \),
 ii. (4 pts) \(A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \) on \(\mathbb{R}^3 \).

6. (10 pts) Give examples as requested, with justification.
 (a) (2.5 pts) A group isomorphism from \((\mathbb{Z}/7\mathbb{Z})^\times \) to \((\mathbb{Z}/9\mathbb{Z})^\times \).
 (b) (2.5 pts) A cyclic group with 20 generators.
 (c) (2.5 pts) A unit in \(\mathbb{Z}[\sqrt{11}] \) other than \(\pm 1 \).
 (d) (2.5 pts) A prime element of \(\mathbb{Z}[i] \).