Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

1. ($\mathbf{1 0} \mathrm{pts}$)
(a) ($\mathbf{7} \mathbf{p t s}$) For $n \geq 3$, determine with proof the conjugacy classes of the dihedral group of order $2 n$. (Hint: Separately consider even n and odd n.)
(b) ($\mathbf{3} \mathbf{~ p t s}$) Let C_{n} be the number of conjugacy classes in the dihedral group of order $2 n$. Compute $\lim _{n \rightarrow \infty} \frac{C_{n}}{n}$.
2. ($\mathbf{1 0} \mathbf{~ p t s)}$ Let p the smallest prime dividing the order of a finite group G. Prove that if H is a subgroup of G with index p then H is a normal subgroup. (Hint: Look at the left multiplication action of G on the left cosets of H.)
3. ($\mathbf{1 0} \mathbf{p t s}$) View \mathbf{Q} and \mathbf{Z} as additive groups. For $a \in \mathbf{Z}$, set $\varphi_{a}: \mathbf{Q} \rightarrow \mathbf{Q}$ by $\varphi_{a}(t)=2^{a} t$.
(a) ($\mathbf{4} \mathbf{p t s}$) Show that φ_{a} is an automorphism of (the additive group) \mathbf{Q} for each $a \in \mathbf{Z}$ and show $\varphi: \mathbf{Z} \rightarrow \operatorname{Aut}(\mathbf{Q})$ given by $a \mapsto \varphi_{a}$ is a homomorphism of groups.
(b) ($\mathbf{4} \mathbf{~ p t s) ~ S e t ~} G=\mathbf{Q} \rtimes_{\varphi} \mathbf{Z}$, a semi-direct product. In G let $H=\{(m, 0): m \in \mathbf{Z}\}$ and $x=(0,1)$. Prove that $x H x^{-1} \subset H$.
(c) $(\mathbf{2} \mathbf{~ p t s})$ Show that $x=(0,1)$ is not an element of the normalizer $\mathrm{N}_{G}(H)$ of H in G.
4. ($\mathbf{1 0} \mathrm{pts}$)
(a) (4 pts) Define a Euclidean domain and prove all ideals in a Euclidean domain are principal.
(b) ($\mathbf{4} \mathbf{~ p t s}$) Prove $F[X]$ is a Euclidean domain when F is a field.
(c) ($\mathbf{2} \mathbf{p t s}$) Prove $\mathbf{Z}[X]$ is not a Euclidean domain.
5. (10 pts)
(a) ($\mathbf{2} \mathbf{~ p t s}$) For a commutative ring R and R-module M, define what it means to say M is a cyclic R-module.
(b) For any matrix $A \in \mathrm{M}_{n}(\mathbf{R})$, we can make \mathbf{R}^{n} into an $\mathbf{R}[t]$-module by declaring that for any polynomial $f(t)=c_{0}+c_{1} t+\cdots+c_{d} t^{d}$ in $\mathbf{R}[t]$ and vector v in $\mathbf{R}^{n}, f(t) v=f(A) v=$ $\left(c_{0} I+c_{1} A+\cdots+c_{d} A^{d}\right) v$.
Determine, with explanation, whether \mathbf{R}^{n} is a cyclic $\mathbf{R}[t]$-module for each of the following choices of A. If it is a cyclic $\mathbf{R}[t]$-module, then find an $\mathbf{R}[t]$-generator:
i. $(4 \mathbf{p t s}) A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ on \mathbf{R}^{2},
ii. $(\mathbf{4} \mathbf{p t s}) A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ on \mathbf{R}^{3}.
6. ($\mathbf{1 0} \mathbf{~ p t s}$) Give examples as requested, with justification.
(a) $(\mathbf{2} .5 \mathbf{~ p t s})$ A group isomorphism from $(\mathbf{Z} / 7 \mathbf{Z})^{\times}$to $(\mathbf{Z} / 9 \mathbf{Z})^{\times}$.
(b) $(2.5 \mathrm{pts}) \mathrm{A}$ cyclic group with 20 generators.
(c) ($\mathbf{2 . 5} \mathbf{~ p t s})$ A unit in $\mathbf{Z}[\sqrt{11}]$ other than ± 1.
(d) $(\mathbf{2 . 5} \mathbf{~ p t s})$ A prime element of $\mathbf{Z}[i]$.
