1. Let X be a topological space and A, B be subsets of X. Prove or disprove the following set equalities.
 (a) $X \setminus (A \cup B) = X \setminus (\text{Int}A \cup \text{Int}B)$.
 (b) $\text{Int}(X \setminus (A \cup B)) = X \setminus (\overline{A} \cup \overline{B})$.

2. Define the equivalence relation on \mathbb{R} such that $x \sim y$ if $x - y$ is rational. Let \mathbb{R}/\sim be the quotient space with the quotient topology. Show that \mathbb{R}/\sim is not Hausdorff.

3. Let A be an open subset in $\mathbb{R}^n, n \geq 2$, whose boundary ∂A is connected. Is ∂A necessarily path-connected? Prove your assertion.

4. Show that if a path-connected, locally path-connected space X has $\pi_1(X)$ finite, then every map $X \to S^1$ is nullhomotopic, that is, it is homotopic to a constant map.

5. Compute the fundamental groups of the following spaces:
 (a) $X \subset \mathbb{R}^3$ is the complement of the union of n lines through the origin.
 (b) $\mathbb{T}^2 \setminus \{p\}$, where \mathbb{T}^2 is the torus.

6. Prove that every continuous map $h : D \to D$ has a fixed point, that is, a point x with $h(x) = x$. Here D is the closed unit disk in \mathbb{R}^2.