Instructions: Solve 6 out of 8 problems. Any results that your responses rely upon must be stated clearly.

1. Let \(s_\Delta : [-1, 1] \to \mathbb{R} \) be a cubic spline function relative to the domain partition \(\Delta \equiv \{-1, 0, 1\} \), so there is one knot at \(x = 0 \). Consider the set \(V \) of all such \(s_\Delta \) that satisfy the simultaneous conditions \(s_\Delta(-1) = 0 \), \(s_\Delta(1) = 0 \), \(s_\Delta'(-1) = 0 \) and \(s_\Delta'(1) = 0 \). Note that \(V \) is a vector space. Derive a basis for \(V \) (show the work for your derivation).

2. Given any \(f : [a, b] \to \mathbb{R} \) that is continuous on \(-\infty < a < b < \infty\), denote the integral of \(f \) by \(I(f) = \int_a^b f(x) \, dx \) and let the two-point Gaussian quadrature approximation (Gauss-Legendre, specifically) be denoted by \(I_2(f) = \sum_{i=1}^{2} w_i f(x_i) \), with weights \(w_i > 0 \) and abscissa \(x_i \in (a, b) \), for \(i = 1, 2 \). In the case \(f(x) = (x - \frac{a + b}{2})^4 \), derive the explicit, algebraic formula for the quadrature error \(I(f) - I_2(f) \) in terms of \(a \) and \(b \).

3. Given any integer \(n \geq 0 \), let \(\mathbb{P}_n[-1, 1] \) denote the space of all real-valued polynomials of degree \(n \) or less on the domain \(-1 \leq x \leq 1\). Let the subset of polynomials with lead coefficient 1 be denoted by \(\tilde{\mathbb{P}}_n[-1, 1] \):
\[
\tilde{\mathbb{P}}_n[-1, 1] = \{ p : [-1, 1] \to \mathbb{R} \mid p(x) = x^n + c_{n-1}x^{n-1} + \ldots + c_0, \{c_{n-1}, \ldots, c_0\} \subset \mathbb{R} \}.
\]
Given any \(p \in \tilde{\mathbb{P}}_{n+1}[-1, 1] \), let \(q \in \mathbb{P}_n[-1, 1] \) denote the best uniform approximant of \(p \) in \(\mathbb{P}_n[-1, 1] \). Prove that \(p - q \) is given by a multiple of a certain Chebyshev polynomial.

4. Let \(N \) be a positive integer and \(\Delta x = 2\pi/N \) be a uniform spacing for points \(x_j = -\pi + j\Delta x \), \(j = 0, 1, \ldots, N \). Given \(f : [-\pi, \pi] \to \mathbb{R} \), continuous, let us denote by \(I(f) \) the integral
\[
I(f) = \int_{-\pi}^{\pi} f(x) \, dx.
\]
Relative to the given domain partition, denote the composite trapezoidal approximation of \(I(f) \) by \(\tilde{I}(f) \). Prove that for \(f(x) = \sin(x) \), the quadrature rule exhibits “superconvergence”, in the sense that
\[
\lim_{\Delta x \to 0} \frac{I(f) - \tilde{I}(f)}{(\Delta x)^2} = 0.
\]

5. In this problem, \(i = \sqrt{-1} \). Let \(N > 1 \) be an integer and define points \(x_n = 2\pi n/N \), for \(n = 0, 1, \ldots, N - 1 \). Consider a function
\[
\phi_m(x) = \frac{\sin(x)}{N} \sum_{k=0}^{N-1} e^{ik(x-x_m)},
\]
for some fixed integer \(m, 0 \leq m < N \). There is a unique phase polynomial of the form

\[
p(x) = \sum_{j=0}^{N-1} \beta_j e^{ijx}
\]

with the property that \(p(x_n) = \phi_m(x_n) \) for all \(n = 0, 1, \ldots, N - 1 \). Provide explicit formulas for the coefficients \(\beta_j, 0 \leq j \leq N - 1 \), in terms of the subindex values \(j \) and \(m \). No other indices should appear in your formulas (note that \(i \) and \(N \) are not indices here).

6. Denote by \(\| \cdot \|_V \) some vector norm on \(\mathbb{C}^n \), and let \(M_n \) be the space of all complex, square matrices with \(n \) rows. Given any \(\mathbf{A} \in M_n \), denote the induced matrix norm by

\[
\text{lub}_V (\mathbf{A}) = \max_{\|\mathbf{x}\|_V = 1} \| \mathbf{A}\mathbf{x}\|_V.
\]

(a) Prove that \(\text{lub}_V (\cdot) \) is submultiplicative.

(b) Given any matrix norm \(\| \cdot \|_\cdot \) on \(M_n \) that is consistent with \(\| \cdot \|_V \), prove that the condition number, \(\kappa(\mathbf{A}) \), defined with respect to the matrix norm \(\| \cdot \|_\cdot \) for an invertible \(\mathbf{A} \) satisfies

\[
1 \leq \kappa(\mathbf{A}).
\]

(c) Now let the vector norm \(\| \mathbf{x}\|_V \) be the maximum size of the entries of \(\mathbf{x} \). In the linear system \(\mathbf{A}\mathbf{x} = \mathbf{b} \), with \(\mathbf{A} \) defined below, assume that the vector \(\mathbf{b} \) may have up to a 10% relative error, as measured using the vector norm \(\| \cdot \|_V \). Provide a numerical bound (with justification) for the corresponding relative error in computing the entries of \(\mathbf{x} \).

\[
\mathbf{A} = \begin{bmatrix}
2 & -1 \\
0 & 1
\end{bmatrix}.
\]

7. Let \(w(x) = |x| \) be a weight function on the domain \(-1 \leq x \leq 1\). Some \(w \)-orthogonal polynomials on the indicated domain can be defined as

\[
\begin{align*}
\phi_0(x) &= 1, \\
\phi_1(x) &= x, \\
\phi_2(x) &= x\phi_1(x) - \frac{1}{2}\phi_0(x), \\
\phi_3(x) &= x\phi_2(x) - \frac{1}{6}\phi_1(x).
\end{align*}
\]

Given a continuous function \(f : [-1, 1] \to \mathbb{R} \), let \(I(f) \) be the integral

\[
I(f) = \int_{-1}^{1} w(x) f(x) \, dx.
\]

Denote by \(\tilde{I}(f) \) the the 3-point Guassian quadrature rule to approximate \(I(f) \). Specifically,

\[
\tilde{I}(f) = \sum_{i=1}^{3} w_i f(x_i) \approx I(f),
\]

where \(\tilde{I}(f) = I(f) \) whenever \(f \) is a polynomial of order 5 or less. Derive the numerical values of \(w_i \) and \(x_i \) for \(i = 1, 2, 3 \).

8. Let \(f(x) = x^4 \). Denote by \(p(x) \) the cubic polynomial such that \(p(-1) = f(-1) \), \(p(1) = f(1) \),
\(p'(1) = f'(1) \) and \(p''(1) = f''(1) \). Let \(q(x) \) be the cubic polynomial that interpolates \(f(x) \) at \(x = -1, 0, 1, 2 \).

(a) Provide the explicit polynomial \(p(x) \).

(b) Provide the explicit polynomial \(q(x) \).

(c) Prove the following:

\[
\lim_{x \to -1} \frac{f(x) - p(x)}{f(x) - q(x)} = \frac{4}{3}.
\]