An introduction to ordinal numbers:
an excerpt from my DRP with Noah Hughes

Tristan Knight
tristan.knight@uconn.edu
University of Connecticut

Dec. 7, 2016

University of Connecticut
DRP Seminar
A pack of wolves, a bunch of grapes or a flock of pigeons are all examples of sets of things.
Definition: A relation on a set A is a set of ordered pairs of elements of A. Alternatively, you can think of it as a subset of the Cartesian product $A \times A$.
Definition: A relation on a set A is a set of ordered pairs of elements of A.
Alternatively, you can think of it as a subset of the Cartesian product $A \times A$.

If an ordered pair (a, b) is an element of a relation R, we write aRb. Relations are almost always denoted by symbols; one prominent example being the equivalence relation \equiv.
Ordering

Definition: An ordering is a relation that shows a hierarchy between elements of a set.

Examples: \((\mathbb{N}, \leq), (\mathbb{Q}, >), (\mathcal{P}(A), \subseteq)\).
Ordering

Definition: An ordering is a relation that shows a hierarchy between elements of a set.

Examples: $(\mathbb{N}, \leq), (\mathbb{Q}, >), (\mathcal{P}(A), \subseteq)$.

Definition: We call a set A with an order \leq partially ordered if for every $x, y,$ and z in A, we have

$x \leq x;$

$x \leq y$ and $y \leq z$ implies $x \leq z;$

$x \leq y$ and $y \leq x$ implies $x = y;$

and totally ordered if in addition for every $x, y \in A$ either

$x \leq y$ or $y \leq x.$
Well Ordering

Definition: A set A with total ordering \leq is well ordered if every nonempty subset has a least element in this ordering.

Example: (\mathbb{N}, \leq) is well ordered.
Definition: A set A with total ordering \leq is well ordered if every nonempty subset has a least element in this ordering.

Example: (\mathbb{N}, \leq) is well ordered.
$(\varnothing(A), \subseteq)$ is not a well order.
Well Ordering

Definition: A set A with total ordering \leq is **well ordered** if every nonempty subset has a least element in this ordering.

Example: (\mathbb{N}, \leq) is well ordered.
$(\wp(A), \subseteq)$ is not a well order.

Example: The set \mathbb{Z}, with the ordering \leq (here in the usual sense), is totally ordered, but **not** well-ordered.
Why?
Definition: A set \(A \) with total ordering \(\leq \) is well ordered if every nonempty subset has a least element in this ordering.

Example: \((\mathbb{N}, \leq) \) is well ordered.

(\(\mathcal{P}(A), \subseteq \)) is not a well order.

Example: The set \(\mathbb{Z} \), with the ordering \(\leq \) (here in the usual sense), is totally ordered, but not well-ordered.

Why? Consider the set of negative integers.
Definition: A set A with total ordering \leq is **well ordered** if every nonempty subset has a least element in this ordering.

Example: (\mathbb{N}, \leq) is well ordered. $(\wp(A), \subseteq)$ is not a well order.

Example: The set \mathbb{Z}, with the ordering \leq (here in the usual sense), is totally ordered, but **not** well-ordered. **Why?** Consider the set of negative integers.

We can, however, define a new order, \leq_w, that is a well ordering of the integers; we proceed to do so as an exercise in well ordering.
Example: Well Ordering of the Integers

Define \leq_w such that, for all integers x, y, and z,

- if $|x| < |y|$, then $x \leq_w y$ (and vice-versa);
- if $|x| = |y|$, then
 - if $x < y$, then $x <_w y$ (and vice-versa);
 - if $x = y$, then $x =_w y$.

Our new \leq_w is a well ordering of \mathbb{Z}. Why?
Example: Well Ordering of the Integers

Define \leq_w such that, for all integers $x, y, \text{ and } z$,

- if $|x| < |y|$, then $x \leq_w y$ (and vice-versa);
- if $|x| = |y|$, then
 - if $x < y$, then $x <_w y$ (and vice-versa);
 - if $x = y$, then $x =_w y$.

Our new \leq_w is a well ordering of \mathbb{Z}.
Example: Well Ordering of the Integers

Define \leq_w such that, for all integers $x, y, \text{ and } z$,

- if $|x| < |y|$, then $x \leq_w y$ (and vice-versa);
- if $|x| = |y|$, then
 - if $x < y$, then $x <_w y$ (and vice-versa);
 - if $x = y$, then $x =_w y$.

Our new \leq_w is a well ordering of \mathbb{Z}. Why?
More Well Orderings of \mathbb{Z}

There are a multitude of ways we can well order the integers:
More Well Orderings of \mathbb{Z}

There are a multitude of ways we can well order the integers:

$$(\mathbb{Z}, \leq_w) \simeq 0, -1, 1, -2, 2, ...$$
More Well Orderings of \mathbb{Z}

There are a multitude of ways we can well order the integers:

$$(\mathbb{Z}, \leq_w) \cong 0, -1, 1, -2, 2, ...$$

$$(\mathbb{Z}, \leq_{w+1}) \cong -1, 1, -2, 2, ..., 0$$
More Well Orderings of \(\mathbb{Z} \)

There are a multitude of ways we can well order the integers:

\[
(\mathbb{Z}, \leq_w) \cong 0, -1, 1, -2, 2, ...
\]

\[
(\mathbb{Z}, \leq_{w+1}) \cong -1, 1, -2, 2, ..., 0
\]

\[
(\mathbb{Z}, \leq_{w+3}) \cong 2, -2, 3, -3, ..., 0, -1, 1
\]
More Well Orderings of \mathbb{Z}

There are a multitude of ways we can well order the integers:

$(\mathbb{Z}, \leq_w) \cong 0, -1, 1, -2, 2, ...$

$(\mathbb{Z}, \leq_{w+1}) \cong -1, 1, -2, 2, ..., 0$

$(\mathbb{Z}, \leq_{w+3}) \cong 2, -2, 3, -3, ..., 0, -1, 1$

$(\mathbb{Z}, \leq_{w+w}) \cong 0, 1, 2, 3, ..., -1, -2, -3, ...$
Well Ordering Theorem: Every set can be well-ordered.
Well Ordering Theorem: Every set can be well-ordered. This theorem really means **any** set: for example,

\[\mathbb{R}, \mathbb{C}, \text{ or } \mathbb{Z} \times 2^\mathbb{R} \times \mathbb{C}. \]
Well Ordering Theorem: Every set can be well-ordered. This theorem really means any set: for example,

\[\mathbb{R}, \mathbb{C}, \text{ or } \mathbb{Z} \times 2^\mathbb{R} \times \mathbb{C}. \]

Proof. Too long and technical for the scope of this presentation. We will see its impact soon, but first we turn to constructing ordinals.
Ordinals are, informally, sets that we use to talk about well orderings.

An example of ordinals that you are familiar with is the set of finite ordinals.
Ordinals are, informally, sets that we use to talk about well orderings.

An example of ordinals that you are familiar with is the set of finite ordinals.

We denote this set as ω, though you may know it as \mathbb{N}.

Ordinals
Constructing Finite Ordinals

$0 = \emptyset$

Note: For finite ordinals, $x < y$ implies $x \in y$ and $x \leq y$ implies $x \subseteq y$.
Constructing Finite Ordinals

\[0 = \emptyset \]
\[1 = \{0\} = \{\emptyset\} \]
Constructing Finite Ordinals

\[
\begin{align*}
0 &= \emptyset \\
1 &= \{0\} = \{\emptyset\} \\
2 &= \{0, 1\} = \{\emptyset, \{\emptyset\}\}
\end{align*}
\]
Constructing Finite Ordinals

\[0 = \emptyset \]
\[1 = \{0\} = \{\emptyset\} \]
\[2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\} \]
\[3 = \{0, 1, 2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} \]

Note: For finite ordinals, \(x < y \) implies \(x \in y \) and \(x \leq y \) implies \(x \subseteq y \).
Constructing Finite Ordinals

\[0 = \emptyset \]
\[1 = \{0\} = \{\emptyset\} \]
\[2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\} \]
\[3 = \{0, 1, 2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} \]
\[\vdots \]
\[n = \{0, 1, 2, \ldots, n - 1\} \]
\[n + 1 = \{0, 1, 2, \ldots, n - 1, n\} \]
Constructing Finite Ordinals

$0 = \emptyset$

$1 = \{0\} = \{\emptyset\}$

$2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}$

$3 = \{0, 1, 2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$

\[\vdots\]

$n = \{0, 1, 2, \ldots, n - 1\}$

$n + 1 = \{0, 1, 2, \ldots, n - 1, n\} = n \cup \{n\}$
Constructing Finite Ordinals

\[
0 = \emptyset \\
1 = \{0\} = \{\emptyset\} \\
2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\} \\
3 = \{0, 1, 2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} \\
\vdots \\
n = \{0, 1, 2, \ldots, n-1\} \\
n + 1 = \{0, 1, 2, \ldots, n-1, n\} = n \cup \{n\} \\
\vdots
\]
Constructing Finite Ordinals

\[0 = \emptyset \]
\[1 = \{0\} = \{\emptyset\} \]
\[2 = \{0, 1\} = \{\emptyset, \emptyset\} \]
\[3 = \{0, 1, 2\} = \{\emptyset, \emptyset, \emptyset, \emptyset\} \]
\[\vdots \]
\[n = \{0, 1, 2, \ldots, n-1\} \]
\[n+1 = \{0, 1, 2, \ldots, n-1, n\} = n \cup \{n\} \]
\[\vdots \]

Note: For finite ordinals, \(x < y \) implies \(x \in y \) and \(x \leq y \) implies \(x \subseteq y \).
Definition: \(\omega \) is the set of all finite ordinals. In other words,

\[
\omega = \{0, 1, 2, 3, ...\}.
\]
Definition: ω is the set of all finite ordinals. In other words,
\[
\omega = \{0, 1, 2, 3, \ldots\}.
\]

ω is the first transfinite ordinal as well as the first limit ordinal.

Definition: A limit ordinal is any ordinal that has no immediate predecessor.
Transfinite Ordinals, continued

\[\omega = \{0, 1, 2, 3, \ldots\} \]
Transfinite Ordinals, continued

\[\omega = \{0, 1, 2, 3, \ldots\} \]

\[\omega + 1 = \omega \cup \{\omega\} = \{0, 1, 2, 3, \ldots, \omega\} \]
Transfinite Ordinals, continued

\[\omega = \{0, 1, 2, 3, \ldots \} \]

\[\omega + 1 = \omega \cup \{\omega\} = \{0, 1, 2, 3, \ldots, \omega\} \]

\[\omega + 2 = (\omega + 1) + 1 = (\omega + 1) \cup \{\omega + 1\} = \{0, 1, 2, 3, \ldots, \omega, \omega + 1\} \]
Transfinite Ordinals, continued

\[\omega = \{0, 1, 2, 3, \ldots \} \]

\[\omega + 1 = \omega \cup \{\omega\} = \{0, 1, 2, 3, \ldots, \omega\} \]

\[\omega + 2 = (\omega + 1) + 1 = (\omega + 1) \cup \{\omega + 1\} = \{0, 1, 2, 3, \ldots, \omega, \omega + 1\} \]

\[\vdots \]

\[\omega + n = \{0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega + (n - 1)\} \]
Transfinite Ordinals, continued

\(\omega = \{0, 1, 2, 3, \ldots \} \)

\(\omega + 1 = \omega \cup \{\omega\} = \{0, 1, 2, 3, \ldots, \omega\} \)

\(\omega + 2 = (\omega + 1) + 1 = (\omega + 1) \cup \{\omega + 1\} = \{0, 1, 2, 3, \ldots, \omega, \omega + 1\} \)

\vdots

\(\omega + n = \{0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega + (n - 1)\} \)

\vdots

\(\omega + \omega = \omega 2 = \{0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots\} \)
Comparing to our well orderings of \mathbb{Z}

Recall:

$$ (\mathbb{Z}, \leq_w) \cong 0, -1, 1, -2, 2, ... $$

$$ (\mathbb{Z}, \leq_{w+1}) \cong -1, 1, -2, 2, ..., 0 $$

$$ (\mathbb{Z}, \leq_{w+3}) \cong 2, -2, 3, -3, ..., 0, -1, 1 $$

$$ (\mathbb{Z}, \leq_{w+w}) \cong 0, 1, 2, 3, ..., -1, -2, -3, ... $$
Comparing to our well orderings of \mathbb{Z}

Recall:

$$(\mathbb{Z}, \leq_w) \cong 0, -1, 1, -2, 2, ...$$

$$\cong \omega \cong 0, 1, 2, 3, ...$$

$$(\mathbb{Z}, \leq_{w+1}) \cong -1, 1, -2, 2, ..., 0$$

$$(\mathbb{Z}, \leq_{w+3}) \cong 2, -2, 3, -3, ..., 0, -1, 1$$

$$(\mathbb{Z}, \leq_{w+w}) \cong 0, 1, 2, 3, ..., -1, -2, -3, ...$$
Comparing to our well orderings of \mathbb{Z}

Recall:

$$(\mathbb{Z}, \leq_w) \cong 0, -1, 1, -2, 2, ...$$

$$\cong \omega \cong 0, 1, 2, 3, ...$$

$$(\mathbb{Z}, \leq_{w+1}) \cong -1, 1, -2, 2, ..., 0$$

$$\cong \omega + 1 \cong 0, 1, 2, 3, ..., \omega$$

$$(\mathbb{Z}, \leq_{w+3}) \cong 2, -2, 3, -3, ..., 0, -1, 1$$

$$(\mathbb{Z}, \leq_{w+w}) \cong 0, 1, 2, 3, ..., -1, -2, -3, ...$$
Comparing to our well orderings of \mathbb{Z}

Recall:

$$(\mathbb{Z}, \leq_w) \cong 0, -1, 1, -2, 2, ...$$

$$\cong \omega \cong 0, 1, 2, 3, ...$$

$$(\mathbb{Z}, \leq_{w+1}) \cong -1, 1, -2, 2, ..., 0$$

$$\cong \omega + 1 \cong 0, 1, 2, 3, ..., \omega$$

$$(\mathbb{Z}, \leq_{w+3}) \cong 2, -2, 3, -3, ..., 0, -1, 1$$

$$(\mathbb{Z}, \leq_{w+w}) \cong 0, 1, 2, 3, ..., -1, -2, -3, ...$$

$$\cong \omega + \omega \cong \omega^2 = 0, 1, 2, ..., \omega, \omega + 1, \omega + 2, ...$$
Comparing to our well orderings of \(\mathbb{Z} \)

Recall:

\[
(\mathbb{Z}, \leq_w) \cong 0, -1, 1, -2, 2, ... \\
\cong \omega \cong 0, 1, 2, 3, ...
\]

\[
(\mathbb{Z}, \leq_{w+1}) \cong -1, 1, -2, 2, ..., 0 \\
\cong \omega + 1 \cong 0, 1, 2, 3, ..., \omega
\]

\[
(\mathbb{Z}, \leq_{w+3}) \cong 2, -2, 3, -3, ..., 0, -1, 1 \\
\cong \omega + 3 \cong 0, 1, 2, 3, ..., \omega, \omega + 1, \omega + 2
\]

\[
(\mathbb{Z}, \leq_{w+w}) \cong 0, 1, 2, 3, ..., -1, -2, -3, ... \\
\cong \omega + \omega \cong \omega^2 = 0, 1, 2, ..., \omega, \omega + 1, \omega + 2, ...
\]
Transfinite Ordinals, continued even more

\[\omega^2 + 1 = \omega^2 \cup \{\omega^2\} \]
Transfinite Ordinals, continued even more

\[\omega^2 + 1 = \omega^2 \cup \{\omega^2\} \]

\[\omega^2 + 2 = (\omega^2 + 1) + 1 = (\omega^2 + 1) \cup \{\omega^2 + 1\} \]
Transfinite Ordinals, continued even more

\[\omega_2 + 1 = \omega_2 \cup \{\omega_2\} \]
\[\omega_2 + 2 = (\omega_2 + 1) + 1 = (\omega_2 + 1) \cup \{\omega_2 + 1\} \]
\[\vdots \]
\[\omega_2 + \omega = \omega_3 = \{0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega_2, \omega_2 + 1, \omega_2 + 2, \ldots\} \]
Transfinite Ordinals, continued even more

\[
\omega_2 + 1 = \omega_2 \cup \{\omega_2\}
\]
\[
\omega_2 + 2 = (\omega_2 + 1) + 1 = (\omega_2 + 1) \cup \{\omega_2 + 1\}
\]
\[
\vdots
\]
\[
\omega_2 + \omega = \omega_3 = \{0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega_2, \omega_2 + 1, \omega_2 + 2, \ldots\}
\]
\[
\vdots
\]
\[
\omega \cdot \omega = \omega^2 = \{0, \ldots, \omega, \ldots, \omega_2, \ldots, \omega_3, \ldots, \omega n, \ldots\}
\]
Transfinite Ordinals, continued even more

\[\omega_2 + 1 = \omega_2 \cup \{\omega_2\} \]

\[\omega_2 + 2 = (\omega_2 + 1) + 1 = (\omega_2 + 1) \cup \{\omega_2 + 1\} \]

\[\vdots \]

\[\omega_2 + \omega = \omega_3 = \{0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega_2, \omega_2 + 1, \omega_2 + 2, \ldots\} \]

\[\vdots \]

\[\omega \cdot \omega = \omega^2 = \{0, \ldots, \omega, \ldots, \omega_2, \ldots, \omega_3, \ldots, \omega n, \ldots\} \]

\[\vdots \]
Closing Thoughts

- Ordinal arithmetic
- Cardinal numbers and arithmetic
- Continuum hypothesis
Thank you!