An Introduction to Fractal Analysis

Julian Ivaldi

April 29, 2021
Contents

- Measure and Dimension
- Hutchinson’s Theorem
 - Statement of Theorem
 - Fixed Point Theorem and Proof of First Claim
 - Proof of Second Claim
- Mass Distribution Principle
- Frostman’s Lemma
 - Statement of Lemma
 - Trees, Flows, and Cut-Sets
 - Max-Flow Min-Cut Theorem
 - Proof of Lemma
σ-Algebras and Measures

A measure on a set is a notion of area or weight of certain subsets of that set. These subsets must be a part of a σ-algebra, which is the structure required to define measures. There exist weaker requirements such as algebras or semi-algebras that alone do not suffice to define measures but are still useful.

A measure μ on a σ-algebra \mathcal{A} is defined as a function $\mu : \mathcal{A} \to [0, \infty]$ that satisfies

1. $\mu(\emptyset) = 0$
2. For $A \subset B$, $\mu(A) \leq \mu(B)$ (Monotonicity)
3. For a countable collection of sets $\{A_i\}$ in \mathcal{A}, $\mu(\bigcup_i A_i) = \sum_i \mu(A_i)$ (Additivity)
Lebesgue Measure, Hausdorff Measure, and More

\[\mathcal{L}^* (A) = \inf \{ \sum_i |P_i|, A \subset \bigcup_i P_i, P_i \text{ half open rectangles} \} \]

\[\mathcal{H}_\delta^\alpha (A) = \inf \{ \sum_i |E_i|^\alpha, A \subset \bigcup_i E_i, |E_i| < \delta \} \]

\[\mathcal{H}^\alpha (A) = \lim_{\delta \to 0} \mathcal{H}_\delta^\alpha (A) \]

\[\mathcal{H}_\infty^\alpha (A) = \inf \{ \sum_i |E_i|^\alpha, A \subset \bigcup_i E_i \} \]

\[\mathcal{H}_\infty^\phi (A) = \inf \{ \sum_i \phi(|E_i|), A \subset \bigcup_i E_i \} \]
We define the Hausdorff dimension of a set A to be

$$\dim(A) = \sup\{\alpha : \mathcal{H}^\alpha(A) = \infty\} = \inf\{\alpha : \mathcal{H}^\alpha(A) = 0\}$$

Other ways to define dimension include Minkowski dimension and packing dimension. These other dimensions may bound Hausdorff dimension.
Hutchinson’s Theorem

Hutchinson’s theorem states that given a complete metric space \((X, d)\) and a family of contractions \(\{f_i\}_{i=1}^\ell\) on \(X\),

1. There exists a unique non-empty compact set \(K\) such that

\[
K = \bigcup_{i=1}^\ell f_i(K)
\]

2. For any probability vector \(p = (p_1, ..., p_\ell)\) there exists a unique probability measure \(\mu_p\) on the attractor \(K\) such that

\[
\mu_p = \sum_{i=1}^\ell p_i \mu_p f_i^{-1}
\]

If \(p_i > 0\) for all \(i\), then \(\text{supp}(\mu_p) = K\).
The Banach fixed-point theorem states that for a complete metric space X and a contraction f, there exists a unique fixed point $z \in X$ such that $f(z) = z$.

We can make use of this theorem by constructing an appropriate metric space and contraction which prove the existence and uniqueness of a fixed point in that space with desired properties.
For the first statement of Hutchinson’s theorem, we consider the space $\text{Cpt}(X)$ defined as all compact subsets of X. Since X is complete, $\text{Cpt}(X)$ endowed with the Hausdorff metric d_H is a complete metric space (Blaschke’s selection theorem).

It can be shown that the function $F = \bigcup_{i=1}^{\ell} f_i$ is a contraction on $(\text{Cpt}(X), d_H)$ and as such, we can apply the fixed-point theorem to obtain a point $K \in \text{Cpt}(X)$ such that $K = F(K) = \bigcup_{i=1}^{\ell} f_i(K)$.

Proof of Second Claim: Metric Space and Self-Map

We follow a similar process to prove the second claim, this time using the space $P(K)$ of Borel probability measures on K. This is a compact metric space when given the dual Lipschitz metric,

$$L(\mu, \nu) = \sup_{\text{Lip}(g) \leq 1} \left| \int gd\mu - \int gd\nu \right|$$

We define a self-map F_p on $P(K)$ as follows

$$F_p(\nu) = \sum_{i=1}^{\ell} p_i \nu f_i^{-1}$$

It remains to show that this is a contraction on $(P(K), L(\mu, \nu))$ and to prove the final note about $\text{supp}(\mu)$.
Proof of Second Claim: F_p is a Contraction

We first note that for some function $g : K \to \mathbb{R}$ with $\text{Lip}(g) \leq 1$, the Lipschitz norm $\text{Lip}(\sum_{i=1}^{\ell} p_i g f_i) \leq r_{\text{max}}$. Now,

$$L(F_p(\mu), F_p(\nu)) = \sup_{\text{Lip}(g) \leq 1} \left| \int gdF_p(\mu) - \int gdF_p(\nu) \right|$$

$$\left| \int gdF_p(\mu) - \int gdF_p(\nu) \right| = \left| \int \sum_{i=1}^{\ell} p_i g f_i d\mu - \int \sum_{i=1}^{\ell} p_i g f_i d\nu \right|$$

$$\leq \text{Lip} \left(\sum_{i=1}^{\ell} p_i g f_i \right) L(\mu, \nu) \leq r_{\text{max}} L(\mu, \nu)$$

Thus, we see that F_p is a contraction. We can apply the fixed point theorem to obtain μ_p that satisfies $\mu_p = \sum_{i=1}^{\ell} p_i \mu_p f_i^{-1}$.

10/23
Support of μ_p is K

If $p_i > 0$ for all i, then given a probability measure $\nu \in P(X)$ with bounded support that satisfies $\nu = \sum_{i=1}^{\ell} p_i \nu f_i^{-1}$, we see that $\text{supp}(\nu)$ will satisfy

$$\text{supp}(\nu) = \bigcup_{i=1}^{\ell} f_i(\text{supp}(\nu))$$

Since the support of a measure is always closed, we find that $\text{supp}(\mu_p) = K$ from the uniqueness of K.
The Mass Distribution Principle states that if a set E supports a Borel measure μ where

$$\mu(B(x, r)) \leq Cr^\alpha$$

for all balls $B(x, r)$ and some constant $0 < C < \infty$, then $\mathcal{H}^\alpha(E) \geq \frac{1}{C} \mu(E)$ and thus $\dim(E) \geq \alpha$.
Proof of MDP

Consider any cover \(\{U_i\} \) of \(E \). We choose \(\{r_i\} \) such that \(r_i > |U_i| \) and \(\{x_i\} \) where \(x_i \in U_i \). Then, we recall the assumption to state,

\[
\mu(U_i) \leq \mu(B(x_i, r_i)) \leq C r_i^\alpha
\]

We let \(r_i \) approach \(|U_i| \) to conclude \(\mu(U_i) \leq C |U_i|^\alpha \)

\[
\frac{1}{C} \mu(E) \leq \sum_i \frac{\mu(U_i)}{C} \leq \sum_i |U_i|^\alpha
\]

Since \(\{U_i\} \) was arbitrary, we conclude \(\mathcal{H}^\alpha(E) \geq \mathcal{H}_\infty^\alpha(E) \geq \frac{1}{C} \mu(E) \) and thus that \(\dim(E) \geq \alpha \)
Frostman’s Lemma

Frostman’s Lemma states that for a gauge function ϕ and a compact set $K \subset \mathbb{R}^d$ with Hausdorff content $\mathcal{H}_\infty^\phi(K) > 0$, there exists a Borel measure μ on K such that $\mu(K) \geq \mathcal{H}_\infty^\phi(K)$ and for all balls B, $\mu(B) \leq C_d \phi(|B|)$
Trees, Flow, and Conductance

A **rooted tree** Γ is a collection of vertices and edges starting at a specific root vertex where there exists exactly one path through edges between any two vertices.

We denote the root vertex σ_0 and for a vertex σ, the depth from the root $|\sigma|$, and the adjacent vertex closer to the root σ'.

To each edge $\sigma'\sigma$, we assign a positive **conductance** $C(\sigma'\sigma)$.

We define a **flow** as a non-negative function f of edges such that

$$f(\sigma'\sigma) = \sum_{\tau' = \sigma} f(\sigma\tau)$$

A **legal flow** is one where $f(\sigma'\sigma) \leq C(\sigma'\sigma)$ for all σ.

The norm of a flow is defined as

$$||f|| = \sum_{|\sigma| = 1} f(\sigma_0\sigma)$$
Example of a Tree
A cut-set is a set of edges Π that intersects all paths from the root. A minimal cut-set is one which has no proper subsets that are also cut-sets. Cut-sets have important properties. If we consider a flow f, then

$$\|f\| \leq \sum_{e \in \Pi} f(e)$$

Equality holds when Π is a minimal cut-set. For legal flows,

$$\|f\| \leq \sum_{e \in \Pi} f(e) \leq \sum_{e \in \Pi} C(e) := C(\Pi)$$
Max-Flow Min-Cut Theorem

The previous slide implies,

\[\max_{\text{legal flows}} \| f \| \leq \min_{\text{cut sets}} C(\Pi) \]

The max-flow min-cut theorem claims that equality holds for both finite and infinite trees, and most importantly that there exists a flow that attains said maximum value.
To apply our knowledge of trees, we must construct an appropriate tree based on our assumptions.
Fix some integer $b > 1$ and construct the b-adic tree Γ corresponding to K. Vertices of depth n correspond to b-adic cubes of generation n that intersect K. Thus, all vertices are guaranteed to have a parent. We define conductance on Γ as

$$C(\sigma' \sigma) = \phi(\sqrt{db^{-n}})$$

The max-flow min-cut theorem guarantees a maximal flow f for this conductance.
We first construct a premeasure $\tilde{\mu}$ defined as such,

$$\tilde{\mu}(\{\text{all paths through } \sigma'\sigma\}) = f(\sigma'\sigma)$$

If we let S denote the collection of all sets of the form
$$\{\text{all paths through } \sigma'\sigma\} \text{ and } \emptyset,$$
then S is a semi-algebra. $\tilde{\mu}$ is additive by the conservation of flow, so it is a premeasure on S. By the extension theorem for semi-algebras, we can extend $\tilde{\mu}$ to the σ-algebra generated by S. Thus, we have constructed a measure μ which satisfies that $\mu(I_\sigma) = f(\sigma'\sigma)$. It remains to show that it has the desired properties.
\[\mu(B) \leq C_d \phi(|B|) \]

This property follows from the fact that any cube \(J \) can be covered by \(C_d \) smaller \(b \)-adic cubes, and by the increasing properties of \(\phi \),

\[
\mu(J) \leq \sum_{i=1}^{C_d} \mu(I_\sigma) \leq C_d \phi(|J|)
\]
\[\mu(K) \geq \mathcal{H}_\infty^\phi(K) \]

First, we recall the tree \(\Gamma \) corresponding to \(K \). We note that any \(b \)-adic cover of \(K \) corresponds to a cut-set of \(\Gamma \), so

\[
\inf_{\Pi} C(\Pi) = \inf_{\Pi} \sum_{e \in \Pi} \phi(\sqrt{db^{-|e|}}) \geq \mathcal{H}_\infty^\phi(K) \geq \mathcal{H}_\infty^\phi(K)
\]

Thus, applying the max-flow min-cut theorem,

\[
\mu(K) = \|f\| = \inf_{\Pi} C(\Pi) \geq \mathcal{H}_\infty^\phi(K)
\]
Sources

Bishop, Peres, Fractals in Probability and Analysis

Chousionis, Measure Theory

Aldridge, Lecture 6, Constructing measures III: Caratheodory’s extension theorem