Real Analysis Preliminary Exam, August 2022

Instructions and notation:
(i) Give full justifications for all answers in the exam booklet.
(ii) The set difference of two sets A, B is defined as $A \Delta B := (A \setminus B) \cup (B \setminus A)$. The characteristic function of a set A is denoted by 1_A. Lebesgue measure on \mathbb{R}^n is denoted by L^n and dx corresponds to Lebesgue integration in \mathbb{R}.

1. (10 points) Let (X, \mathcal{B}, μ) be a measure space. For any $A, B \in \mathcal{B}$, let

 \[d(A, B) = \mu(A \Delta B) = \int |1_A - 1_B| \, d\mu. \]

 (a) (5 points) Show that

 \[d(A, C) \leq d(A, B) + d(B, C) \]

 for all $A, B, C \in \mathcal{B}$.

 (b) (5 points) Let $A_1, B_1, A_2, B_2, \ldots \in \mathcal{B}$. Show that

 \[d \left(\bigcup_{n \geq 1} A_n, \bigcup_{n \geq 1} B_n \right) \leq \sum_{n=1}^{\infty} d(A_n, B_n). \]

2. (10 points) Let (X, \mathcal{F}, μ) be a measure space and $g : X \to [0, \infty]$ a measurable function. Define

 \[\nu(E) = \int_E g \, d\mu \quad \text{for all } E \in \mathcal{F}. \]

 Show that ν is a measure, and then show that

 \[\int f \, d\nu = \int fg \, d\mu \]

 for any measurable function $f : X \to [0, \infty]$.

3. Compute the limit

 \[\lim_{n \to \infty} \int_0^n \left(1 + \frac{x}{n} \right)^n \cos x \, dx. \]

4. (10 points) Let (X, \mathcal{F}, μ) be a measure space with $\mu(X) = 1$. Let $p, q \in [1, \infty]$ with $p \leq q$. Show that

 \[\|f\|_p \leq \|f\|_q, \]

 for all $p, q \in [1, \infty]$ with $p \leq q$ and all functions $f \in L^q(\mu)$.

5. (10 points) Let (X, \mathcal{F}, μ) be a measure space, (Y, \mathcal{G}) a measurable space, and $\phi : X \to Y$ a measurable map. Define

 \[\nu(A) = \mu(\phi^{-1}(A)) \quad \text{for all } A \in \mathcal{G}. \]

 Show that ν is a measure and

 \[\int f \, d\nu = \int f \circ \phi \, d\mu \]

 for any measurable function $f : Y \to [-\infty, \infty]$ for which the integral on the right hand side is defined.
6. (10 points) Let E and F be Borel subsets of \mathbb{R}^2, such that

$$\mathcal{L}^1(E_x) = \mathcal{L}^1(F_x) \quad \text{for all } x \in \mathbb{R},$$

where $A_x = \{ y \in \mathbb{R} : (x, y) \in A \}$ denotes the x-section of any $A \subset \mathbb{R}^2$. Show that $\mathcal{L}^2(E) = \mathcal{L}^2(F)$.

7. (10 points) Let μ_1, μ_2, \ldots be a sequence of Radon measures on a locally compact Hausdorff space X. Suppose also that

$$\lim_{n \to \infty} \int f \, d\mu_n$$

exists in \mathbb{R} for every $f : X \to \mathbb{R}$ that is continuous of compact support. Show that there is a Radon measure μ on X such that

$$\int f \, d\mu = \lim_{n \to \infty} \int f \, d\mu_n \quad \text{for all } f \in C_c(X).$$