# MATH313-Preliminary Examination. 

August 2000

Instructions: Answer three out of the four questions. You do not have to prove results which you rely upon, just state them clearly !

Q1) (a) Prove: A qudrature formula $I_{n}(f)=\sum_{k=0}^{n} \alpha_{k} f\left(x_{k}\right)$ that uses the $n+1$ distinct nodes $x_{0}, \ldots, x_{n}$ and is exact of order at least $n$ is interpolatory, that is,

$$
\alpha_{k}=\int_{a}^{b} L_{k}(x) d x, \quad k=0, \ldots, n,
$$

where

$$
L_{k}(x)=\frac{\prod_{\substack{j=0 \\ j \neq k}}^{n}\left(x-x_{j}\right)}{\prod_{\substack{j=0 \\ j \neq k}}^{n}\left(x_{k}-x_{j}\right)}, \quad k=0, \ldots, n .
$$

(b) The Legendre polynomial of degree $n$ is defined by

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

with $P_{0}(x) \equiv 1$. Prove (verify) that for $k=0,1, \ldots, n-1$,

$$
\int_{-1}^{1} x^{k} P_{n}(x) d x=0
$$

Q2) (a) Derive the recurrence relation $T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)$ for the Tchebyshev polynomials:

$$
T_{n}(x)=\cos \left(n \cos ^{-1} x\right), \quad n=0,1, \ldots
$$

and prove that $\hat{T}_{n}(x)=\left(1 / 2^{n-1}\right) T_{n}(x)$ is a monic (that is, the leading coefficient is 1 ).
(b) Prove that $\hat{T}_{n}(x)$ has minimal infinity norm among all monic polynomials of degree $n$ on the interval $[-1,1]$. Moreover, show that $\left\|\hat{T}_{n}(x)\right\|_{\infty} \geq$ $1 / 2^{n-1}$, where $\|\cdot\|_{\infty}$ denotes the maximum norm on the interval $[-1,1]$.
(c) Let $\mathcal{S}$ be the subspace of $C[a, b]$ spanned by $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$. Define $\operatorname{dist}\left(x^{n}, \mathcal{S}\right)=\inf _{p \in \mathcal{S}}\left(\left\|7 x^{n}-p\right\|_{\infty}\right)$. Show that $\operatorname{dist}\left(x^{n}, \mathcal{S}\right)=7(b-a)^{n} / 2^{2 n-1}$.

Q3) a) Let $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$ be a vector whose entries are all positive numbers and for any vector $y \in \mathbb{R}^{n}$, define the quantity

$$
f(y):=\inf \{\alpha>0 \mid-\alpha x \leq y \leq \alpha x\},
$$

where for two vectors $u, w \in \mathbb{R}^{n}, u \leq w$ means the every entry in $w$ is at least equal to the corresponding entry in $v$. Show that $f(y)$ defines a vector norm on $R^{n}$. In the case that $x=(1, \ldots, 1)^{T}$, can you identify the common norm which now $f(y)$ yields?
b) Let $A \in \mathbb{C}^{n, n}$ and let

$$
\rho(A):=\max \{|\lambda| \mid \operatorname{det}(A-\lambda I)=0\}
$$

Show that the following statements are equivalent:
i) $\lim _{i \rightarrow \infty} A^{i}=0$.
ii) $\rho(A)<1$.
iii) There exists a multiplicative matrix norm $\|\cdot\|$ such that in this norm, $\|A\|<1$.
c) Suppose that $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Show that there is no multiplicative norm $\|\cdot\|$ for which $\|A\|=1$. Hence find an example of a nonmultiplicative norm.

Q4) a) Show that if $B=\left(b_{i, j}\right)$ is an invertible $n \times n$ lower (upper) triangular matrix, then $B^{-1}$ is an $n \times n$ lower (upper) tringular matrix.

Recall now that the LU-factorization of $A, A=L U$, where L is a lower tringular matrix and $U$ is an upper triangular matrix, is called normalized if the diagonal entries of $L$ are all 1's.

Use the intial part of the question to show that a normalized $L U$-factorization of a nonsingular matrix $A$ is unique, namely, if $A=L U=L^{\prime} U^{\prime}$ are normalized LU-factorizations of $A$, then $L=L^{\prime}$ and $U=U^{\prime}$.

