MATH313 - Preliminary Examination.

August 24, 2001

Instructions: Answer two out of the four questions. You do not have to prove results which you rely upon, just state them clearly !

Q1) Recall that, for an $n \times n$ real matrix A, the matrix norm induced by the 2 -vector norm was found to be:

$$
\|A\|_{2}=\rho^{1 / 2}\left(A^{T} A\right)
$$

where $\rho(\cdot)$ is the spectral radius of a matrix, namely,

$$
\rho(B)=\max \{|\lambda| \mid \operatorname{det}(\lambda I-B)=0\}
$$

Recall also that the condition number of an invertible matrix A with respect to the 2 -norm is $\operatorname{Cond}_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$. Suppose now that A and B are $n \times n$ real invertible matrices. Prove the following facts:
(i) $\operatorname{Cond}_{2}(A) \geq 1$.
(ii) $\operatorname{Cond}_{2}\left(A^{T} A\right)=\left(\operatorname{Cond}_{2}(A)\right)^{2}$.
(iii) $\operatorname{Cond}_{2}(A)=\operatorname{Cond}_{2}\left(A^{T}\right)$.
(iv) $\operatorname{Cond}_{2}(A B) \leq \operatorname{Cond}_{2}(A) \operatorname{Cond}_{2}(B)$.
(v) $\operatorname{Cond}_{2}(\alpha A)=\operatorname{Cond}_{2}(A)$, where α is a nonzero scalar.
(vi) $\operatorname{Cond}_{2}(A) \geq\left|\lambda_{1}\right| /\left|\lambda_{n}\right|$, where $\left|\lambda_{1}\right| \geq \ldots \geq\left|\lambda_{n}\right|>0$ and $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A.

Q2) a) Let $A^{(1)}=A \in \mathbb{R}^{n, n}$ be an invertible matrix which admits an LU-factorization without pivoting. Let M_{1}, \ldots, M_{k-1} be elementary lower triangular matrices of order n and indices $1, \ldots, k-1$, respectively ${ }^{1}$, for which $A^{(k)}=M_{k-1} \cdots M_{1} A^{(1)}$ has zeros under its first $(k-1)$ diagonal entries. Partition A into the block partitioning

$$
A=\left[\begin{array}{l|l}
A_{1,1} & A_{1,2} \\
\hline A_{2,1} & A_{2,2}
\end{array}\right],
$$

where $A_{1,1}$ is of size $(k-1) \times(k-1)$ and partition $A^{(k)}$ in conformity with A into

$$
A^{(k)}=\left[\begin{array}{c|c}
* & * \\
\hline 0 & A_{k}
\end{array}\right] .
$$

Justify why $A_{1,1}$ is invertible and show that:

$$
A_{k}=A_{2,2}-A_{2,1} A_{1,1}^{-1} A_{1,2} .
$$

Finally, prove that if, in addition, A is symmetric, then A_{k} is symmetric.
b) Show that, in general (that is, not taking advantage of zero entries), the number of multiplication operations and division operations which are required to reduce an $n \times n$ matrix to an upper triangular matrix is

$$
\frac{n^{3}}{3}-\frac{n}{3}
$$

(c) Show that if $A \in \mathbb{C}^{n, n}$ is an invertible matrix and $A=L_{1} U_{1}=L_{2} U_{2}$ are LU-factorizations of A with the diagonal entries of L_{1} and L_{2} all 1's, then $L_{1}=L_{2}$ and $U_{1}=U_{2}$. [Carefully state all the results on which you rely, but do not prove these auxiliary result.]

Q3) (a) Prove: A qudrature formula $I_{n}(f)=\sum_{k=0}^{n} \alpha_{k} f\left(x_{k}\right)$ that uses the $n+1$ distinct nodes x_{0}, \ldots, x_{n} and is exact of order at least n is interpolatory, that is,

$$
\alpha_{k}=\int_{a}^{b} L_{k}(x) d x, \quad k=0, \ldots, n,
$$

[^0]where
$$
L_{k}(x)=\frac{\prod_{\substack{j=0 \\ j \neq k}}^{n}\left(x-x_{j}\right)}{\prod_{\substack{j=0 \\ j \neq k}}^{n}\left(x_{k}-x_{j}\right)}, \quad k=0, \ldots, n .
$$
(b) The Legendre polynomial of degree n is defined by
$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$
with $P_{0}(x) \equiv 1$. Calculate explicitly P_{1}, \ldots, P_{4}. Prove (verify) that for $k=0,1, \ldots, n-1$,
$$
\int_{-1}^{1} x^{k} P_{n}(x) d x=0
$$
(c) Use part (b) to conclude that $\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=0$, when $m \neq n$, and that $\int_{-1}^{1} P_{n}^{2}(x) d x=2 /(2 n+1)$.

Q4) (a) Derive the recurrence relation $T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)$ for the Tchebyshev polynomials:

$$
T_{n}(x)=\cos \left(n \cos ^{-1} x\right), \quad n=0,1, \ldots
$$

and prove that $\hat{T}_{n}(x)=\left(1 / 2^{n-1}\right) T_{n}(x)$ is a monic polynomial (that is, the leading coefficient is 1).
(b) Prove that $\hat{T}_{n}(x)$ has minimal infinity norm among all monic polynomials of degree n on the interval $[-1,1]$. Moreover, show that $\left\|\hat{T}_{n}(x)\right\|_{\infty}=$ $1 / 2^{n-1}$, where $\|\cdot\|_{\infty}$ denotes the maximum norm of a function on the interval $[-1,1]$.
(c) Obtain that $p(x) \approx 0.98516+.11961 x$ is the best approximation polynomial of order at most 1 to the function $f(x)=\sqrt{1+(1 / 4) x^{2}}$ over the interval $[0,1]$

[^0]: ${ }^{1}$ Recall that a matrix M is called an elementary matrix of order n and index i if M is an $n \times n$ matrix of the form $M=I-m_{i} e_{i}^{T}$, where $m_{i}=(\underbrace{0, \ldots, 0}_{i \text { zeros }}, \underbrace{\mu_{i+1}, \ldots, \mu_{n}}_{\text {real numbers }})^{T}$ and e_{i} is the usual i-th coordinate vector in the n-dimensional space.

