Algebra Preliminary Examination

August 2002

- 1. Show that a group of order 150 has a proper normal subgroup.
- 2. (a) Let n > 1 be a positive integer. Show that every ideal in $\mathbb{Z}/(n)$ is the product of maximal ideals.
- (b) For which n > 1 is each ideal in $\mathbb{Z}/(n)$ the product of distinct maximal ideals?
- (c) For which n > 1 is $\mathbb{Z}/(n)$ isomorphic to the product of fields?
- 3. (a) Find, up to isomorphism, all finite groups which are the union of exactly two conjugacy classes. (If G is a group and $x \in G$, then $\{gxg^{-1} \mid g \in G\}$ is the conjugacy class of x.)
- (b) Find, up to isomorphism, all finite groups which are the union of exactly three conjugacy classes.
- 4. Let R be an integral domain and $0 \neq r \in R$.
- (a) Define r is an irreducible in R.
- (b) Define r is a prime in R.
- (c) Prove or disprove: If $r \in R$ is irreducible, then it is prime.
- (d) Prove or disprove: If $r \in R$ is prime, then it is an irreducible.