INSTRUCTIONS: Answer three out of four questions. You do not have to prove results which you rely upon, just state them clearly.

Q1) (a) Suppose that $p(x)$ is a polynomial of degree at most n which has $n+1$ distinct roots. Show that $p(x) \equiv 0$. Use this result to show that the polynomial p_{n}, of order at most n, which interpolates a function f at $n+1$ distinct points x_{0}, \ldots, x_{n} is unique. [Assume that the values which f takes at these points are $f_{0}, \ldots f_{n}$, respectively.]
(b) Suppose that $f \in C^{n+1}[a, b]$ and that x_{0}, \ldots, x_{n} are $n+1$ distinct points in the interval. Let p_{n} be the interpolation polynomial for f on x_{0}, \ldots, x_{n}. Let $e_{n}(x)=f(x)-p_{n}(x)$ denote the error function on $[a, b]$. Show that for each point $x \in[a, b]$, there is a point $\xi_{x} \in(a, b)$ such that

$$
e_{n}(x)=\frac{f^{(n+1)}\left(\xi_{x}\right)}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

(c) A function f is defined on the interval $[0,1]$ and its derivatives satisfy that $\left|f^{m}(x)\right| \leq m$!, for all $x \in[0,1]$ and for all $m=0,1,2, \ldots$. For any $0<q<1$, let $p_{n}(x), n \geq 0$, be the interpolation polynomial of degree at most n which interpolates f at $x_{0}=1, x_{1}=$ $q, x_{2}=q^{2}, \ldots, x_{n}=q^{n}$. Show that

$$
\lim _{n \rightarrow \infty} p_{n}(0)=f(0)
$$

Taking $q=1 / 2$ and $n=10$, find an upper estimate on $\left|p_{10}(0)-f(0)\right|$.
Q2) The following compactness theorem is known: Let V be a finite dimensional normed vector space and W be a closed subset of V. If there exists a constant $M>0$ such that $\|w\| \leq M$ for all $w \in W$, then any sequence in W has a convergent subsequence.
Define P_{n} to be the vector space of polynomials of degree at most n and $\|f\|=\max _{0 \leq x \leq 1}|f(x)|$ for any continous function $f \in C[0,1]$.
(a) Show that for any $f \in C[0,1]$, there exists a polynomial $p^{*} \in P_{n}$ which minimizies the uniform norm of $\|f-q\|$ for any $q \in P_{n}$.
(Hint: let $\inf _{w \in W}\|w-f\|=\alpha$. Then there exists a sequence $\left\{w_{i}\right\} \subset W$ such that $\left\|w_{i}-f\right\| \rightarrow \alpha$ as $i \rightarrow \infty$. The sequence $\left\{w_{i}\right\}$ is called a minimizing sequence.)
(b) Define a set on rational functions

$$
R_{n, m}=\left\{\frac{p(x)}{q(x)}: \quad p \in P_{n} \text { and } q \in P_{m},\|q\|=1, q>0 \text { on }[0,1],\right.
$$

p and q have no common factors. $\}$.

Our Goal: Given $f \in C[0,1]$, prove the existence of $r^{*} \in R_{n, m}$ such that it minimizes the uniform norm of $\|f-r\|$ for any $r \in R_{n, m}$.
Let p_{i} / q_{i} be a minimizing sequence. Show that there exists a constant M such that $\left\|q_{i}\right\|$, $\left\|p_{i} / q_{i}\right\|$ and $\left\|p_{i}\right\|$ are all bounded by M for all i.
(c) By Q2a, we can assume that (a subsequence of) p_{i} and q_{i} converge to $p \in P_{n}$ and $q \in P_{m}$, respectively. Explain why $q \geq 0$ and can have at most finite number of roots of even multiplicity in $[0,1]$.
(d) Let z be a root of q, explain why z has to be a root of p of at least the same multiplicity. (Hint: $\left\|p_{i} / q_{i}\right\| \leq M$ from part Q2b). Hence try to finish the proof for our goal stated in Q2b.

Q3) (a) Recall that the 1 -norm of a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in C^{n}$ is given by $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$. Show that for $n \times n$ matrix $A=\left(a_{i, j}\right) \in C^{n, n}$, the 1 -matrix norm induced by the 1 -vector norm, that is, by

$$
\|A\|_{1}=\max _{\|x\|_{1}=1, x \in C^{n}}\|A x\|_{1}
$$

is given by

$$
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i, j}\right|
$$

(b) Recall that for a matrix $B=\left(b_{i, j}\right) \in C^{n, n},\|B\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|b_{i, j}\right|$ and that if B is invertible, then $\operatorname{cond}_{\infty}(B):=\|B\|_{\infty}\left\|B^{-1}\right\|_{\infty}$.

Suppose now that $A=\left(a_{i, j}\right) \in C^{n, n}$ is an invertible matrix with $\sum_{j=1}^{n}\left|a_{i, j}\right|=1,1 \leq i \leq n$. Show, first, that if D is any invertible diagonal matrix, then $\|D A\|_{\infty}=\|D\|_{\infty}$ and use this to show that

$$
\operatorname{cond}_{\infty}(A) \leq \operatorname{cond}_{\infty}(D A)
$$

Discuss the follwoing problem: Can the numerical stability of solving the system $A x=b$, where A is as above, be improved by scaling the rows of the matrix A and the vector b by a diagonal matrix D, namely, by solving instead the system $A^{\prime} x=b^{\prime}$, where $A^{\prime}=D A$ and $b^{\prime}=D b$, for some invertible diagonal matrix D.

Q4) (a) Consider the uniform partition of the interval $[0,2 \pi]$,

$$
x_{k}=\frac{2 p i k}{N}, \quad k=0, \ldots, N-1, \quad N=2 M+1 .
$$

Show that there exists a unique trigonometric polynomial

$$
\Psi(x)=\frac{A_{0}}{2}+\sum_{h=1}^{M}\left(A_{h} \cos (h x)+B_{h} \sin (h x)\right)
$$

such that

$$
\Psi\left(x_{k}\right)=y_{k}, \quad y_{k} \in C, \quad k=0, \ldots, N-1 .
$$

(b) Show that if $y_{k}, k=0, \ldots, N-1$ are real numbers, then A_{h} and B_{h} are also real numbers.

