Ph.D. Exam for Math 303 Summer, 2002

- 1. Prove that $\lim_{a\to\infty}\int_1^a \frac{1}{x}\sin x \,dx$ exists but that the function $\frac{1}{x}\sin x$ is not Lebesgue integrable on $[1,\infty)$.
- 2. Show that if F is a non-decreasing function on [a, b], then $F(b) F(a) \ge \int_a^b F'(t) dt$. Give a meaning to the difference between the two quantities when F is right continuous by relating them to the Lebesgue decomposition of F (or of the associated measure), and an example showing that equality does not always hold.
- 3. Prove that the space $L_p(X, \mathcal{M}, \mu)$, is complete for $1 \leq p < \infty$.
- 4. Assume the Borel set $A \subset [0,1]$ satisfies the following property: there exists $0 \le \tau < 1$ such that $m(A \cap I) \le \tau m(I)$ for all intervals $I \subset [0,1]$. Prove that m(A) = 0. (Here m is any finite Borel measure on [0,1].)
- 5. Let (X, \mathcal{S}, μ) and (Y, \mathcal{T}, μ) be σ -finite measure spaces, and let $f: S \times T \mapsto \mathbf{R}$ be a $\mathcal{S} \otimes \mathcal{T}$ -measurable function. Let $p \geq 1$. Show that if f(x, y) is in $L_p(X, \mathcal{S}, \mu)$ for every fixed $y \in Y$, then the integral $\int f(x, y) d\nu(y)$ is also in $L_p(X, \mathcal{S}, \mu)$, even better, prove the generalized Minkowsky's inequality:

$$\left(\int_X \left[\int_Y |f(x,y)| d\nu(y)\right]^p d\mu(x)\right)^{1/p} \leq \int_Y \left(\int_X |f(x,y)| d\mu(x)\right)^{1/p} d\nu(y).$$