Algebra Preliminary Examination

August 2003

- 1. Let R be a commutative ring with identity and A an ideal of R. Define $r(A) = \{x \in R \mid x^n \in A \text{ for some positive integer } n\}.$
- (i) If A is an ideal of R, show that r(A) is an ideal of R.
- (ii) If A is a prime ideal of R, show that r(A) = A.
- (iii) If A, B are ideals of R, show that $r(A \cap B) = r(A) \cap r(B)$.
- (iv) If R = Z and A is the ideal generated by $a = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$, with the p_i distinct primes and e_i positive integers, what is r(A)?
- 2. Suppose R is a ring with identity and M a left Artinian R-module. If $\phi: M \longrightarrow M$ is a one-to-one R-module homomorphism, show that ϕ is onto.

(Recall that M is Artinian if any decreasing chain of submodules $N_1 \supseteq N_2 \supseteq \cdots$ has the property that $N_i = N_{i+1}$ for some positive integer i.)

3. Let p and q be distinct primes. Show that a group of order p^2q has a normal Sylow subgroup.

- 4. Let n be a positive integer greater than 1 and R the ring of $n \times n$ matrices over a field. For $1 \le j \le n$, let L_j denote the matrices with arbitrary elements in the j-th column and zeros elsewhere.
- (i) Show that L_1 is a minimal left ideal of R; that is L_1 is a nonzero left ideal of R that properly contains no other nonzero left ideal.
- (ii) Show that L_1 is isomorphic as a left R-module to L_j for each $2 \le j \le n$.
- (iii) Let L be any minimal left ideal of R. Show that L is R-module isomorphic to L_1 .

Hint: Consider the ideals LL_1, LL_2, \ldots, LL_n .

- 5. Let G_1 and G_2 be two finite abelian groups with the property that for each integer n > 1, G_1 and G_2 have the same number of elements of order n. Show that G_1 and G_2 are isomorphic.
- 6. Let F be a field and $R = F[x_1, x_2, \ldots]$ the ring of polynomials over F in an infinite number of variables. Show that R is a unique factorization domain. Carefully state any theorems that you use.