MATH 313 August 2003, PRELIMINARY EXAMINATION

INSTRUCTIONS: Answer three out of four questions. You do not have to prove results which you rely upon, just state them clearly.

Q1) (a) Recall that the 1 -norm of a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in C^{n}$ is given by $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$. Show that for $n \times n$ matrix $A=\left(a_{i, j}\right) \in C^{n, n}$, the 1 -matrix norm induced by the 1 -vector norm, that is, by

$$
\|A\|_{1}=\max _{\|x\|_{1}=1, x \in C^{n}}\|A x\|_{1},
$$

is given by

$$
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i, j}\right|
$$

(b) Recall that for a matrix $B=\left(b_{i, j}\right) \in C^{n, n},\|B\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|b_{i, j}\right|$.

Suppose now that $A=\left(a_{i, j}\right) \in C^{n, n}$ is an invertible matrix with $\sum_{j=1}^{n}\left|a_{i, j}\right|=1,1 \leq i \leq n$. Show, first, that if D is an invertible diagonal matrix, then $\|D A\|_{\infty}=\|D\|_{\infty}$ and use this to show that

$$
\operatorname{cond}_{\infty}(A) \leq \operatorname{cond}_{\infty}(D A)
$$

Where, for a nonsingular matrix $B, \operatorname{cond}_{\infty}(B)=\|B\|_{\infty}\left\|B^{-1}\right\|_{\infty}$.
(c) Discuss the following problem: Can the numerical stability of solving the system $A x=b$, where A is as above, be improved by scaling the rows of the matrix A and the vector b by a diagonal matrix D, namely, by solving instead the system $A^{\prime} x=b^{\prime}$, where $A^{\prime}=D A$ and $b^{\prime}=D b$, for some invertible diagonal matrix D ?

Q2) (a) Determine the polynomial of degree at most $n-1$ which best approximates the polynomial

$$
Q(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}
$$

on the interval $[a, b]$ and show that its maximum deviation from Q is given by

$$
\frac{1}{2^{n-1}}\left(\frac{b-a}{2}\right)^{n} a_{0} .
$$

(b) Show that the polynomial of degree at most 2 which best approximates the polynomial $a x^{3}+b x^{2}+c x+d$ on the interval $[-1,1]$ is given by

$$
b x^{2}+\left(c+\frac{3 a}{4}\right) x+d
$$

(Recall that Chebyshev polynomials satisfy the three term recursion, $T_{0}=1, \quad T_{1}=$ $\left.x, \quad T_{n+1}=2 x T_{n}-T_{n-1}\right)$.

Q3) Let $w(x)$ be a positive continuous function on $[a, b]$. For $j=1,2, \ldots$, let $p_{j}(x)$ be the corresponding monic orthogonal polynomial of degree j, i.e.,

$$
p_{j}(x)=x^{j}+a_{1} x^{j-1}+\cdots+a_{j},
$$

such that $\left(p_{j}, p_{k}\right)=\int_{a}^{b} w(x) p_{j}(x) p_{k}(x) d x=0$ if $j \neq k$. In particular $p_{0}(x)=1$.
(a) Prove that the roots $x_{1}, . ., x_{n}$ of $p_{n}(x)$ are real, simple and lie in (a, b).
(b) Prove that $p_{n}(x)$ satisfy a three term recurrence relation, i.e.,

$$
p_{i+1}(x)=\left(x-\delta_{i+1}\right) p_{i}(x)-\gamma_{i+1}^{2} p_{i-1}(x), \quad 1 \geq 0,
$$

where $p_{i-1}=0, \quad \gamma_{1}=0$, and

$$
\delta_{i+1}=\frac{\left(x p_{i}, p_{i}\right)}{\left(p_{i}, p_{i}\right)}, \quad i \geq 0, \quad \gamma_{i+1}^{2}=\frac{\left(p_{i}, p_{i}\right)}{\left(p_{i-1}, p_{i-1}\right)}, \quad i \geq 1
$$

(c) For $a=-1 ; b=1 ; w(x)=1$; find $p_{1}(x)$ and $p_{2}(x)$.

Q4) (a) Consider the uniform partition of the interval $[0,2 \pi]$,

$$
x_{k}=\frac{2 \pi k}{N}, \quad k=0, \ldots, N-1, \quad N=2 M+1 .
$$

Show that there exists a unique trigonometric polynomial

$$
\Psi(x)=\frac{A_{0}}{2}+\sum_{h=1}^{M}\left(A_{h} \cos (h x)+B_{h} \sin (h x)\right)
$$

such that

$$
\Psi\left(x_{k}\right)=y_{k}, \quad y_{k} \in C, \quad k=0, \ldots, N-1
$$

(b) Show that if $y_{k}, k=0, \ldots, N-1$, are real numbers, then A_{h} and B_{h} are also real numbers.

