- 1) Suppose G is a finite group, p a prime, A a p-Sylow subgroup of G and B a subgroup of G.
- (i) If A is a normal subgroup of G, show that $A \cap B$ is a p-Sylow subgroup of B.
- (ii) If B is a normal subgroup of G, show that $A \cap B$ is a p-Sylow subgroup of B.
 - 2) Suppose G is a finite group and A the subgroup generated by $\{x^3 \mid x \in G\}$.
 - (a) Show that A is a normal subgroup of G.
 - (b) Show that any element in G/A is of order dividing 3.
- (c) Suppose B is a normal subgroup of G with the property that any element of G/B is of order dividing 3. Show that $B \supseteq A$.
- 3) Let V be a finite dimensional vector space and W a subspace of V. Then there is a linear transformation $\phi: V \longrightarrow V$ such that $\phi^2 = \phi$ and $\phi(V) = W$.

- 4) Let $R=\mathbb{Z}[x]$, be the ring of polynomials with integer coefficients. Tell if each of the following are true or false and give a reason.
 - (a) R is a principal ideal domain.
 - (b) Every prime ideal in R is maximal.
 - (c) R is a unique factorization domain.
- (d) If $f,g\in R$ have greatest common divisor d, then there exist $u,v\in R$ with d=uf+vg.
- 5) If A, B are finitely generated abelian groups and $Z \oplus A \simeq Z \oplus B$, then $A \simeq B$. (Here, Z is the group of integers under addition.)
 - 6) Let R be an integral domain.
 - (a) Suppose M is an R-module. Define "M is a free R-module".
- (b) Let I be an ideal of R. Show that I, considered as an R-module, is a free R-module if and only if I is a principal ideal.