Number:

Math 310

Preliminary Examination

August, 2004

Problem 1:

(20 pts)

(a) State and prove an existence and uniqueness theorem for the equations

$$\begin{array}{rcl} x' & = & f(x,y) , \\ y' & = & g(x,y) , \end{array}$$

with initial conditions x(0) = a and y(0) = b under the assumptions that f, g, and all their partial derivatives are continuous.

(b) For the system:

$$x' = x(1 - x - y),$$

 $y' = y(1 - 2x - 3y),$

with x(0) = y(0) = 1/10. Can either x(t) or y(t) become 0 at finite time? Justify your reasoning.

Problem 2: (20 pts)

(a) Find the Green's function for the operator A where

$$Ay = -y'' + y$$

for y satisfying y'(0) = y'(1) = 0.

- (b) find the norm of the Green's operator from L^2 to L^2 ..
- (c) Show that there exists a unique solution for

$$-y'' + y = \lambda \tan^{-1} y + \cos x$$

 $y'(0) = y'(1) = 0$

for an appropriate range of $|\lambda|$.

Problem 3: (20 pts)

Find a fundamental solution for the ordinary differential operator $\frac{d^2y}{dx^2} - y$. Express the solution of of $\frac{d^2y}{dx^2} - y = \phi$ as a integral.

Problem 4: (20 pts)

Define $M: L^2(0,2) \to L^2(0,2)$ such that for all $f \in L^2(0,2)$,

$$(Mf)(t) = (1 + \sin t) f(t)$$

Find the operator norm of M (justify fully your answer). Show that M is not a compact operator.

Problem 5: (20 pts)

Prove that if an operator is of the form A = I + K where K is compact, then A is injective implies A is surjective.

Problem 6: (20 pts)

Find the distributional derivative U_{xt} if U(x,t) = H(x)H(t) with H the Heaviside step function.