COMPLEX ANALYSIS PRELIMINARY EXAMINATION

August 2004

Special Instructions:

- (1) Justify your answers, and show your work in the examination booklet.
- (2) Notation:
 - C the space of complex numbers

• $B(a, R) = \{z \in \mathbb{C} : |z - a| < R\}$

• D = B(0,1) the unit disk in \mathbb{C}

- $\mathcal{H}(G)$ the space of holomorphic (analytic) functions in the region G.
- 1. Let f be holomorphic on $\mathbb{C}\setminus 0$. Suppose that for any $z\neq 0$

$$|f(z)| \leqslant |\log(|z|)|.$$

Show that $f(z) \equiv 0$.

- 2. Let C_1 and C_2 be two Euclidean circles in the plane with C_2 lying in the interior of C_1 . Let Δ be the domain bounded by these circles. Is there a conformal map of Δ bijectively onto an annulus $\{z \mid 0 < r_1 < |z| < 1\}$? If there is one, describe it; if there is none, describe why none can exist?
- 3. Prove or give a counterexample. Suppose f is holomorphic in D and continuous on its closure. Then f extends to a holomorphic function on B(0,R) for some R>1.
- 4. Evaluate and justify your answer.

$$\int\limits_{-\infty}^{\infty} \frac{\cos x}{x^2 + 1} dx.$$

(b)

$$\int_{0}^{2\pi} \frac{d\theta}{(a+b\cos\theta)^2}, \ a>b>0.$$

5. Let $\mathcal{F} = \{ f : D \to D, f \in \mathcal{H}(D) \}$, and $L = \sup_{f \in \mathcal{F}} |f'''(0)|$.

(a) Show that L exists (as a finite number).

- (b) Show that there is a function $f \in \mathcal{F}$ such that f'''(0) = L.
- 6. (a) Suppose G is a bounded region in \mathbb{C} , $f \in \mathcal{H}(G)$, $f \neq 0$ in G, f is continuous on the closure of G, and |f| is constant on the boundary of G. Prove that f is constant on G.
 - (b) Can the hypothesis that $f \neq 0$ in G be dropped?
 - (c) Can the hypothesis that G is bounded be replaced by the assumption that the complement to G is unbounded?