INSTRUCTIONS: Answer three out of four questions. You do not have to prove results which you rely upon, just state them clearly.

Good luck!

Q1) (a) Prove: An $n \times n$ matrix $A=\left(a_{i, j}\right)$ admits an LU-factorization $A=L U$ without pivoting and with invertible factors L and U if and only if for $k=1, \ldots, n$, the leading principal submatrices of A of order k are all invertible.
(b) Let A be an $n \times n$ invertible matrix that admits an LU-factorization without pivoting. Show that such a factorization is unique; namely, if $A=L_{1} U_{1}=L_{2} U_{2}$, where L_{1} and L_{2} are lower triangular matrices with $\operatorname{diag}(L 1)=\operatorname{diag}\left(L_{2}\right)=I$ and where U_{1} and U_{2} are upper triangular, then $L_{1}=L_{2}$ and $U_{1}=U_{2}$.
(c) Suppose that A is a real $n \times n$ symmetric invertible matrix which admits an LUfactorization $A=L U$, with a lower triangular matrix L such that $\operatorname{diag}(L)=I$, and with an upper triangular matrix U having positive diagonal entries. Show that A admits a factorization $A=\tilde{L} \tilde{L}^{T}$.

Q2) Let $w(x)$ be a positive continuous function on $[a, b]$. For $j=1,2, \ldots$, let $p_{j}(x)$ be the corresponding monic orthogonal polynomial of degree j, i.e.,

$$
p_{j}(x)=x^{j}+a_{1} x^{j-1}+\cdots+a_{j},
$$

such that $\left(p_{j}, p_{k}\right)=\int_{a}^{b} w(x) p_{j}(x) p_{k}(x) d x=0$ if $j \neq k$. In particular $p_{0}(x)=1$.
(a) Prove that the roots $x_{1}, . ., x_{n}$ of $p_{n}(x)$ are real, simple and lie in (a, b).
(b) Prove that $p_{n}(x)$ satisfy a three term recurrence relation, i.e.,

$$
p_{i+1}(x)=\left(x-\delta_{i+1}\right) p_{i}(x)-\gamma_{i+1}^{2} p_{i-1}(x), \quad 1 \geq 0
$$

where $p_{i-1}=0, \quad \gamma_{1}=0$, and

$$
\delta_{i+1}=\frac{\left(x p_{i}, p_{i}\right)}{\left(p_{i}, p_{i}\right)}, \quad i \geq 0, \quad \gamma_{i+1}^{2}=\frac{\left(p_{i}, p_{i}\right)}{\left(p_{i-1}, p_{i-1}\right)}, \quad i \geq 1
$$

(c) For $a=-1 ; b=1 ; w(x)=1$; find $p_{1}(x)$ and $p_{2}(x)$.

Q3) (a) Derive the recurrence relation $T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)$ for the Tchebyshev polynomials:

$$
T_{n}(x)=\cos \left(n \cos ^{-1} x\right), \quad n=0,1, \ldots
$$

and prove that $\hat{T}_{n}(x)=\left(1 / 2^{n-1}\right) T_{n}(x)$ is monic (that is, the leading coefficient is 1).
(b) Prove that $\hat{T}_{n}(x)$ has minimal infinity norm on the interval $[-1,1]$,

$$
\left\|\hat{T}_{n}(x)\right\|_{\infty}=\max _{-1 \leq x \leq 1}\left|\hat{T}_{n}(x)\right|
$$

among all monic polynomials of degree n on the interval $[-1,1]$. Moreover, show that $\left\|\hat{T}_{n}(x)\right\|_{\infty}=1 / 2^{n-1}$.
(c) Find $n+1$ points $\left\{x_{i}\right\}$ in the interval $[0,1]$ that minimize

$$
\Delta_{[0,1]}^{n}=\max _{0 \leq \xi \leq 1} \prod_{i=0}^{n}\left(\xi-x_{i}\right)
$$

(d) Find the (minimal) value $\Delta_{[0,1]}^{n}$ itself (Remark: for the interval $[0,1]$ that we consider here such a minimal value should differ from $\Delta_{[-1,1]}^{n}$ corresponding to the interval $[-1,1]$ which should be known to you from the (b)).

Q4) (a) Let $N=2 M+1$ and consider

$$
\begin{equation*}
\Psi(x)=\frac{A_{0}}{2}+\sum_{h=1}^{M}\left(A_{h} \cos h x+B_{h} \sin h x\right) \tag{1}
\end{equation*}
$$

and

$$
p(x)=\beta_{0}+\beta_{1} e^{i x}+\beta_{2} e^{2 i x}+\ldots+\beta_{N-1} e^{(N-1) i x}
$$

Assume that $\Psi(x)$ and $p(x)$ agree at the N points

$$
x_{k}=2 \pi k / N, \quad k=0,1, \ldots, N-1
$$

i.e.,

$$
\Psi\left(x_{k}\right)=p\left(x_{k}\right), \quad k=0,1, \ldots, N-1 .
$$

Use the relation between $e^{x_{k}}$ and $e^{x_{N-k}}$ to find the matrix R such that

$$
\left[\begin{array}{lllllllll}
A_{0} & A_{1} & A_{2} & \cdots & A_{M} & B_{M} & \cdots & B_{2} & B_{1}
\end{array}\right] \cdot R=\left[\begin{array}{llll}
\beta_{0} & \beta_{1} & \cdots & \beta_{N-1} \tag{2}
\end{array}\right]
$$

(b) Explain why the matrix R in (2) is invertible, and use the uniqueness of the interpolation polynomial to show that the trigonometric polynomial (1) satisfying

$$
\begin{equation*}
\Psi\left(x_{k}\right)=y_{k}, \quad y_{k} \in \mathbb{C}, \quad k=0, \ldots, N-1 . \tag{3}
\end{equation*}
$$

is unique.
(c) Explain how to solve the trigonometric interpolation problem in (3) with the help of (2) via the inverse FFT (provide the definition for the DFT).

