Algebra Prelim Exam 315

August 2005

- 1a) Show that a group of order 45 is abelian.
- 1b) Is every group of order p^2q , with p and q distinct primes, abelian?
- 2) Suppose G is a group. Recall that G satisfies the ascending chain condition on subgroups, if for any subgroups $H_1 \subseteq H_2 \subseteq H_3 \subseteq \cdots$ there is a positive integer i such that $H_i = H_{i+1} = H_{i+2} = \cdots$. Also G satisfies the descending chain condition on subgroups if for any subgroups $H_1 \supseteq H_2 \supseteq H_3 \supseteq \cdots$ there is an integer i such that $H_i = H_{i+1} = H_{i+2} = \cdots$.
- (a) Show that every finitely generated abelian group satisfies the ascending chain condition.
- (b) Which finitely generated abelian groups satisfy the descending chain condition?
 - 3) Let R = Z[x, y].
- (a) If I is a principal ideal of R, show that there are only finitely many principal ideals of R which contain I.
 - (b) Show that (x, y) is a prime ideal of R which is not maximal.

- 4) Let V be a vector space over the field F and B_1 and B_2 two bases for V. Show that if B_1 has infinite cardinality then B_2 also has infinite cardinality. (You may not just quote the uniqueness of dimension for a vector space.)
- 5) Let n be a positive integer, GL(n,C) the group of invertible $n \times n$ complex matrices, and G a finite group. Suppose $\Psi: G \longrightarrow GL(n,C)$ is a group homomorphism. If $g \in G$, show that $\Psi(g)$ is a diagonalizable matrix.
 - 6) Suppose R is a commutative ring with 1, M an R-module and

 $\Psi: M \longrightarrow R$

an onto R-module homomorphism. Show that

$$M = Ker(\Psi) \oplus B$$

for some submodule $B \subseteq M$ with $B \simeq R$.