MATH 310, Preliminary Exam

DEPARTMENT OF MATHEMATICS University of Connecticut

August, 2005

NAME:	SIGNATURE:	
T A ' T TATT''	DECITIE CIGE.	

DO SIX OF THE SEVEN QUESTIONS!

- 1. a) What is the definition of a compact linear operator from a Banach space X to itself;
- b) Give an example of an operator for $X = L^p([0,1])$ which is a compact linear operator and explain why;
- c) Give an example of an operator for $X = L^p([0,1])$ which is NOT a compact linear operator and explain why;
- 2. a) What is the definition of weak convergence of a sequence $\{x_n\}$ in a Hilbert space H;
 - b) Prove that a strongly convergent sequence is also a weakly convergent sequence in H;
 - c) Give an example of a weakly convergent sequence which is NOT strongly convergent in l^2 and explain;
- 3. a) Give an example of a distribution which can NOT be identified with a continuous function in R and explain why.
 - b) Define $\delta(0)$ as a distribution;
 - c) If $T(\phi) = \phi(0) + \phi(1)$ for every $\phi \in \mathcal{D}(\mathcal{R})$, find ∂T the derivative of T.
- 4. a) Suppose f is an operator from Banach space X to itself. Give the definition of f being Fréchet differentiable at a point $x \in X$.
- b) Let X = C[0,1] with sup-norm. Let $t_i \in [0,1]$ and $v_i \in C[0,1]$, and define $f(x) = \sum_{i=1}^n (x(t_i))^2 v_i$. Prove that f is Fréchet differentiable at all points of X and give a formula for f'.
- 5. Find a function in $C^1[0,1]$ that minimizes the integral $\int_0^1 [(u'(t))^2 + u(t)]dt$ with constraints u(0) = 0 and u(1) = 1.
- 6. Find an orthonormal basis for $L^2[0,1]$ by considering the Sturm-Liouville operator Ax = x'' + x with x(0) = x'(1) = 0. Explain the reasons (theory) behind your method.
- 7. Let $[u_n]$ be an orthonormal sequence in a Hilbert space and let $[\lambda_n]$ be a bounded sequence in R. Prove that the operator $Ax = \sum \lambda_n < x, u_n > u_n$ is compact if and only if $\lambda_n \to 0$ as $n \to \infty$.