MATH 313 August 2005 PRELIMINARY EXAMINATION

INSTRUCTIONS: Answer three out of four questions. You do not have to prove results which you rely upon, just state them clearly.

Good luck!

Q1) (a) Suppose that $A^{(1)} = A$ is an invertible $n \times n$ matrix and that the Gaussian elimination algorithm with partial pivoting applied to $A^{(1)}$ produces the upper triangular matrix $A^{(n)}$. As usual, let $A^{(k)}$ be the renamed array following any necessary row intrechanges before the k-th major step of the elimination so that

$$a_{i,j}^{(k+1)} = \begin{cases} a_{i,j}^{(k)}, & when \ i \leq k, \ 1 \leq j \leq n, \\ 0 & when \ i \geq k+1, \ 1 \leq j \leq k, \\ a_{i,j}^{(k)} - a_{i,k}^{(k)} a_{k,j}^{(k)} / a_{k,k}^{(k)}, & when \ i,j \geq k+1. \end{cases}$$

Show that the total number of multiplication and division operations needed to reduce $A^{(1)}$ to $A^{(n)}$ is $(n^3 - n)/3$. [Hint: Recall that $\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$.]

- (b) Suppose that all the leading principal minors of A are positive. Show that A has an LU–factorization with unit diagonal entries in L and positive diagonal entries in U.
- (c) Suppose now that no partial pivoting is necessary and that $A^{(1)} = (a_{i,j}^{(1)})$ is tridiagonal, that is, $a_{i,j}^{(1)} = 0$ when |i-j| > 1, $1 \le i, j \le n$. Show that each of $A^{(1)}, \ldots, A^{(n)}$ is tridiagonal.
- (d) Suppose that A is an $n \times n$ invertible matrix which admits an LU–factorization without pivoting. Partition A into:

$$A = \left[\begin{array}{c|c} A_{1,1} & A_{1,2} \\ \hline A_{2,1} & A_{2,2} \end{array} \right],$$

with $A_{1,1}$ being a $(k-1) \times (k-1)$ matrix. Knowing that $A_{1,1}$ is invertible (why?), show that the current active array which is the $(n-k+1) \times (n-k-1)$ matrix $A_k = \left(a_{i,j}^{(k)}\right)$, $i, j = k, \ldots, n$ is given by:

$$A_k = A_{2,2} - A_{2,1} A_{2,2}^{-1} A_{1,2}.$$

Assume now that in addition to A being invertible, A is Hermitian. Use this formula to deduce that A_k is also Hermitian, k = 1, ..., n.

Q2)(a) Let $a \le x_0 < x_1 < \dots < x_n \le b$ be n+1 distinct numbers. Show that there exists a unique polynomial of degree at most n^{th} which passes through (x_i, y_i) , $i = 0, 1, \dots, n$.

(b) Show that there exist unique numbers γ_i , i = 0, 1, ..., n, such that

$$\sum_{i=0}^{n} \gamma_i P(x_i) = \int_a^b P(x) \ dx$$

for all polynomials P with degree(P) $\leq n$.

(c) Divide the interval [0,1] into m equal length subintervals and implement the composite integration rule of (b) with n=2 and some fixed set of support points. For large m, what is the relationship between m and the approximation error,

$$\left| \int_{0}^{1} f(x)dx - \sum_{j=1}^{m} \sum_{i=0}^{2} \gamma_{i,j} f(x_{i,j}) \right|$$

where f is a C^{∞} function? (Hint: state and use the Peano Theorem).

Q3) Let w(x) be a positive continuous function on [a,b]. For j=1,2,..., let $p_j(x)$ be the corresponding monic orthogonal polynomial of degree j, i.e.,

$$p_j(x) = x^j + a_1 x^{j-1} + \dots + a_j,$$

such that $(p_j, p_k) = \int_a^b w(x)p_j(x)p_k(x)dx = 0$ if $j \neq k$. In particular $p_0(x) = 1$. (a) Prove that the roots $x_1, ..., x_n$ of $p_n(x)$ are real, simple and lie in (a, b).

- (b) Prove that $p_n(x)$ satisfy a three term recurrence relation, i.e.,

$$p_{i+1}(x) = (x - \delta_{i+1})p_i(x) - \gamma_{i+1}^2 p_{i-1}(x), \quad i \ge 0,$$

where $p_{i-1} = 0$, $\gamma_1 = 0$, and

$$\delta_{i+1} = \frac{(xp_i, p_i)}{(p_i, p_i)}, \quad i \ge 0, \quad \gamma_{i+1}^2 = \frac{(p_i, p_i)}{(p_{i-1}, p_{i-1})}, \quad i \ge 1.$$

(c) For a = -1; b = 1; w(x) = 1; find $p_1(x)$ and $p_2(x)$.

Q4) Consider the $k \times k$ matrix

• Set

$$p_0 = 2, p_1(x) = 2x, (1)$$

and define the family of polynomials $\{p_k(x)\}$ by

$$p_k(x) = \det(2xI - A_k). \tag{2}$$

For $k = 3, 4, \dots$ derive the recurrence relations of the form

$$p_k(x) = (\alpha_k x - \beta_k) p_{k-1}(x) - \gamma_k p_{k-2}(x), \qquad (3)$$

i.e., find $\{\alpha_k, \beta_k, \gamma_k\}$ in (3) explicitly.

(Hint: Expand the determinant in (2) along the first row.)

• The family of polynomials $\{p_k(x)\}$ is closely related to one of the classical families of orthogonal polynomials. Identify the latter orthogonal polynomials $\{Q_k(x)\}$ by the name, and explain the relationship between $\{p_k(x)\}$ and $\{Q_k(x)\}$.

(Hint: The two families $\{p_k(x)\}$ and $\{Q_k(x)\}$ slightly differ from each other. To state the relationship between them look not only at the recurrence relations (3) for $\{p_k(x)\}$, but also at first two polynomials $p_0(x), p_1(x)$ in (1).)

• Use the obtained relationship between $\{p_k(x)\}$ and $\{Q_k(x)\}$ to write down an explicit formula of the form

 $p_k(x)$ = "an explicit expression in terms of k (and not involving $p_{k-1}(x), p_{k-2}(x), p_{k-3}(x), \dots$ "
(4)

(Hint: the right hand side of (4) should contain trigonometric functions.)

- You wrote down the formula (4) using the relationship between $\{p_k(x)\}$ and $\{Q_k(x)\}$. Now provide an independent proof of it, deducing (4) from (1) and (3).
- Use the formula (4) to derive explicit expressions for the eigenvalues of the matrix A_k .