Algebra preliminary exam

August 21, 2006

1. Let G be a finite group.
a) Show any subgroup of G with index 2 is a normal subgroup. (This can be useful in later parts.)
b) If G has a subgroup of index 2 , show the commutator subgroup of G has even index.
c) Show a subgroup of index 2 contains all elements in G of odd order. (This is independent of part b.)
d) Use either part b or part c to prove A_{4} has no subgroup of index 2 .
2. Let p be an odd prime number. Prove any group of size $2 p$ is either cyclic or dihedral. (That is, if $\# G=2 p$ then $G \cong \mathbf{Z} /(2 p)$ or $G \cong D_{p}$.)
3. When G is a nontrivial finite p-group and N is a nontrivial normal subgroup of G, prove N contains a nontrivial element of the center of G. (A special case, with $N=G$, says a nontrivial finite p-group has a nontrivial center.)
4. Let I be the ideal $(3,1+\sqrt{-5})$ in $\mathbf{Z}[\sqrt{-5}]$. Since $3 \mathbf{Z} \subset I$, there is a ring homomorphism $\mathbf{Z} / 3 \mathbf{Z} \rightarrow \mathbf{Z}[\sqrt{-5}] / I$ given by $a \bmod 3 \mathbf{Z} \mapsto a \bmod I$. Show this is an isomorphism and then show I is not principal.
5. Define a Euclidean domain and show $F[X]$ is Euclidean, where F is a field.
6. a) Let V be a vector space over a field F and $L: V \rightarrow V$ be an F-linear map. If $v_{1}, \ldots, v_{r} \in V$ are eigenvectors for L with distinct eigenvalues in F, prove v_{1}, \ldots, v_{r} are linearly independent in V.
b) For each of the following real vector spaces V, provide an example of an \mathbf{R}-linear map $V \rightarrow V$ realizing the indicated vectors as eigenvectors of the linear map with distinct eigenvalues:

- $V=C^{\infty}(\mathbf{R})$ (the infinitely differentiable functions $\mathbf{R} \rightarrow \mathbf{R}$) and $v_{i}=e^{a_{i} x}$ for distinct real a_{i},
- $V=C^{\infty}(\mathbf{R})$ and $v_{i}=\sin \left(a_{i} x\right)$ for distinct positive a_{i},
- $V=$ all real sequences $\left(c_{0}, c_{1}, c_{2}, \ldots\right)$ and $v_{i}=\left(1, a_{i}, a_{i}^{2}, \ldots, a_{i}^{n}, \ldots\right)$ for distinct real a_{i}.

