INSTRUCTIONS: Answer three out of five questions. You do not have to prove results which you rely upon, just state them clearly.

Good luck!

Q1) (a) Let we are given $(n+1)$ points $\left\{x_{k}, y_{k}\right\}, \quad k=0,1, \ldots, n$. Show that the interpolation problem of finding a polynomial $p(x)$ whose degree does not exceed n and such that

$$
\begin{equation*}
p\left(x_{k}\right)=y_{k} \quad(k=0,1, \ldots, n), \tag{1}
\end{equation*}
$$

always has a unique solution $p(x)$.
(b) Formulate and prove the Lagrange formula for the interpolating polynomial $p(x)$ defined in (1).
(c) Let $p(x)$ again denote the interpolating polynomial defined in (1). Show that if a function $f(x)$ has an $(n+1)$ st derivative, then for every argument y there exists a number s in the smallest interval $I\left[x_{0}, \ldots, x_{n}, y\right]$ which contains y and support abscissas x_{i}, satisfying

$$
f(y)-p(y)=\frac{w(y) f^{(n+1)}(s)}{(n+1)!}
$$

where

$$
w(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right) .
$$

Q2) Let the numbers a and $b(>a)$ be fixed, and let us define the scalar product in the linear space Π_{n} (consisting of polynomials whose degree does not exceed n) by

$$
<f(x), g(x)>=\int_{a}^{b} f(x) g(x) w(x) d x, \quad f, g \in \Pi_{n}
$$

where $w(x)$ is the weight function ${ }^{1}$.
By applying the Gram-Schmidt process to $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ one obtains a system of orthogonal polynomials $\left\{p_{0}(x), p_{1}(x), \ldots, p_{n}(x)\right\}$ such that

$$
<p_{k}(x), p_{j}(x)>=0, \quad \text { if } \quad k \neq j .
$$

[^0]- $w(x) \geq 0$ is measurable on $[a, b]$.
- All moments $\mu_{k}:=\int_{a}^{b} x^{k} w(x) d x$ exist and finite for $k=0,1,2, \ldots$
- For polynomials $s(x)$ which are nonnegative on $[a, b]$ the relation $\int_{a}^{b} s(x) w(x) d x=0$ implies $s(x)=0$ on $[a, b]$.
(a) Show that

$$
<p(x), p_{n}(x)>=0
$$

for all $p(x) \in \Pi_{n-1}$.
(b) Show that the roots x_{1}, \ldots, x_{n} of $p_{n}(x)$ are all real and simple, and that they all lie on the open interval (a, b).
(c) Show that the matrix

$$
\left[\begin{array}{cccc}
p_{0}\left(t_{1}\right) & p_{0}\left(t_{2}\right) & \cdots & p_{0}\left(t_{n}\right) \\
p_{1}\left(t_{1}\right) & p_{1}\left(t_{2}\right) & \cdots & p_{1}\left(t_{n}\right) \\
\vdots & \vdots & & \vdots \\
p_{n-1}\left(t_{1}\right) & p_{n-1}\left(t_{2}\right) & \cdots & p_{n-1}\left(t_{n}\right)
\end{array}\right]
$$

is nonsingular for the mutually distinct numbers t_{1}, \ldots, t_{n}.
(d) Let $w_{1}, w_{2}, \ldots, w_{n}$ be the solution of the nonsingular system of equations

$$
\left[\begin{array}{cccc}
p_{0}\left(t_{1}\right) & p_{0}\left(t_{2}\right) & \cdots & p_{0}\left(t_{n}\right) \\
p_{1}\left(t_{1}\right) & p_{1}\left(t_{2}\right) & \cdots & p_{1}\left(t_{n}\right) \\
\vdots & \vdots & & \vdots \\
p_{n-1}\left(t_{1}\right) & p_{n-1}\left(t_{2}\right) & \cdots & p_{n-1}\left(t_{n}\right)
\end{array}\right] \cdot\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right]=\left[\begin{array}{c}
<p_{0}(x), p_{0}(x)> \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

Prove that the relation

$$
\int_{a}^{b} w(x) p(x) d x=\sum_{k=1}^{n} w_{k} p\left(x_{k}\right)
$$

holds for all polynomials $p(x) \in \Pi_{2 n-1}$.
Q3) For $k=1,2, \ldots, n$ consider the $k \times k$ matrices

$$
A_{k}=\left[\begin{array}{ccccccc}
0 & 1 & & & & & \\
1 & 0 & 1 & & & & \\
& 1 & 0 & 1 & & & \\
& & 1 & \ddots & \ddots & & \\
& & & \ddots & \ddots & \ddots & \\
& & & & 1 & 0 & \sqrt{2} \\
& & & & & \sqrt{2} & 0
\end{array}\right]
$$

Let us define the polynomials

$$
p_{k}(x)=\operatorname{det}\left(2 x I-A_{k}\right) \quad \text { for } \quad k=1,2, \ldots n .
$$

(a) Derive the recurrence relations for $\left\{p_{k}(x)\right\}_{k=1}^{n}$ by expanding the determinants $\operatorname{det}(2 x I-$ A_{k}) along their top rows.
(b) By looking at the obtained recurrence relations identify polynomials $\left\{p_{k}(x)\right\}_{k=1}^{n}$ by the name (it is one of the well-known families of the orthogonal polynomials), and write down (without proving it) a well-known trigonometric expression for $p_{n}(x)$.
(c) Use the latter well-known trigonometric expression for $p_{n}(x)$ to derive (i.e., not just state it but deduce it) the formula the roots of $p_{n}(x)$ and thus for the eigenvalues of the matrix A_{n}.

Q4) (a) Prove: An $n \times n$ matrix $A=\left(a_{i, j}\right)$ admits an LU-factorization $A=L U$ without pivoting and with invertible factors L and U if and only if for $k=1, \ldots, n$, the leading principal submatrices of A of order k are all invertible.
(b) Let A be an $n \times n$ invertible matrix that admits an LU-factorization without pivoting. Show that such a factorization is unique; namely, if $A=L_{1} U_{1}=L_{2} U_{2}$, where L_{1} and L_{2} are lower triangular matrices with $\operatorname{diag}(L 1)=\operatorname{diag}\left(L_{2}\right)=I$ and where U_{1} and U_{2} are upper triangular, then $L_{1}=L_{2}$ and $U_{1}=U_{2}$.
(c) Suppose that A is a real $n \times n$ symmetric invertible matrix which admits an LUfactorization $A=L U$, with a lower triangular matrix L such that $\operatorname{diag}(L)=I$, and with an upper triangular matrix U having positive diagonal entries. Show that A admits a factorization $A=\tilde{L} \tilde{L}^{T}$.

Q5) (a) Let $N=2 M+1$ and consider

$$
\begin{equation*}
\Psi(x)=\frac{A_{0}}{2}+\sum_{h=1}^{M}\left(A_{h} \cos h x+B_{h} \sin h x\right) \tag{2}
\end{equation*}
$$

and

$$
p(x)=\beta_{0}+\beta_{1} e^{i x}+\beta_{2} e^{2 i x}+\ldots+\beta_{N-1} e^{(N-1) i x}
$$

Assume that $\Psi(x)$ and $p(x)$ agree at the N points

$$
x_{k}=2 \pi k / N, \quad k=0,1, \ldots, N-1
$$

i.e.,

$$
\Psi\left(x_{k}\right)=p\left(x_{k}\right), \quad k=0,1, \ldots, N-1 .
$$

Use the relation between $e^{x_{k}}$ and $e^{x_{N-k}}$ to find the matrix R such that

$$
\left[\begin{array}{lllllllll}
A_{0} & A_{1} & A_{2} & \cdots & A_{M} & B_{M} & \cdots & B_{2} & B_{1}
\end{array}\right] \cdot R=\left[\begin{array}{llll}
\beta_{0} & \beta_{1} & \cdots & \beta_{N-1} \tag{3}
\end{array}\right]
$$

(b) Explain why the matrix R in (3) is invertible, and use the uniqueness of the interpolation polynomial to show that the trigonometric polynomial (2) satisfying

$$
\begin{equation*}
\Psi\left(x_{k}\right)=y_{k}, \quad y_{k} \in \mathbb{C}, \quad k=0, \ldots, N-1 . \tag{4}
\end{equation*}
$$

is unique.

[^0]: ${ }^{1}$ By its definition, the weight function must meet the following requirements:

