Math 310 Preliminary Exam Fall 2008

Name _

Signature_

- 1. (20 pts)
 - (a) Let $\tau_0 \in (0, 1)$. Find the Green's Function for

$$y'' + y = \delta(t - \tau_0)$$

 $y'(0) = y(1) = 0.$

(b) Show that there exists a unique solution for

$$y'' + y = \lambda \tan^{-1} y + \cos x$$

 $y'(0) = y(1) = 0$

for $|\lambda|$ sufficiently small.

- 2. (20 pts) Let T be a compact operator on a Hilbert space \mathcal{H} and $\{\varphi_n : n \in N\}$ be an orthonormal system of \mathcal{H} .
 - (a) (5 pts) Show $\varphi_n \rightarrow 0$ weakly. Explain why this gives an example of weakly convergent sequence which is not strongly convergent.
 - (b) (5 pts) Using a. or otherwise, show $||T\varphi_n|| \longrightarrow 0$
 - (c) (10 pts) Let λ_n be a sequence of complex numbers. Then operator S defined by $Sf = \sum_{n=1}^{\infty} \lambda_n \langle f, \varphi_n \rangle \varphi_n$ is compact iff $\lim_{n \to \infty} \lambda_n = 0$.
- 3. (20 pts)
 - (a) Let f be an operator on a Banach space X, give the definition of f being Fréchet differentiable at a point $x \in X$.
 - (b) Define $f : C[0,1] \longrightarrow C[0,1]$ by $[f(x)](t) = x(t) + \int_0^1 (x(st))^2 ds$. Compute f'(x).
- 4. (20 pts) Let K be a compact operator on a Banach space. If I + K is injective, then it is surjective.
- 5. (20 pts) Let $T(\varphi) = \varphi(-1) + \varphi(1)$ for every $\varphi \in \mathcal{D}(R)$.
 - (a) Show T is a distribution.
 - (b) Find ∂T the distributional derivative of T.