Math 310 Preliminary Exam

Fall 2008

Name \qquad
Signature \qquad

1. $(20 \mathrm{pts})$
(a) Let $\tau_{0} \in(0,1)$. Find the Green's Function for

$$
\begin{aligned}
y^{\prime \prime}+y & =\delta\left(t-\tau_{0}\right) \\
y^{\prime}(0) & =y(1)=0
\end{aligned}
$$

(b) Show that there exists a unique solution for

$$
\begin{aligned}
y^{\prime \prime}+y & =\lambda \tan ^{-1} y+\cos x \\
y^{\prime}(0) & =y(1)=0
\end{aligned}
$$

for $|\lambda|$ sufficiently small.
2. (20 pts) Let T be a compact operator on a Hilbert space \mathcal{H} and $\left\{\varphi_{n}: n \in N\right\}$ be an orthonormal system of \mathcal{H}.
(a) (5 pts) Show $\varphi_{n} \rightharpoonup 0$ weakly. Explain why this gives an example of weakly convergent sequence which is not strongly convergent.
(b) (5 pts) Using a. or otherwise, show $\left\|T \varphi_{n}\right\| \longrightarrow 0$
(c) $(10 \mathrm{pts})$ Let λ_{n} be a sequence of complex numbers. Then operator S defined by $S f=\sum_{n=1}^{\infty} \lambda_{n}\left\langle f, \varphi_{n}\right\rangle \varphi_{n}$ is compact iff $\lim _{n \longrightarrow \infty} \lambda_{n}=0$.
3. (20 pts)
(a) Let f be an operator on a Banach space X, give the definition of f being Fréchet differentiable at a point $x \in X$.
(b) Define $f: C[0,1] \longrightarrow C[0,1]$ by $[f(x)](t)=x(t)+\int_{0}^{1}(x(s t))^{2} d s$. Compute $f^{\prime}(x)$.
4. (20 pts) Let K be a compact operator on a Banach space. If $I+K$ is injective, then it is surjective.
5. (20 pts) Let $T(\varphi)=\varphi(-1)+\varphi(1)$ for every $\varphi \in \mathcal{D}(R)$.
(a) Show T is a distribution.
(b) Find ∂T the distributional derivative of T.

