Name: Section:	Name:	Section:
----------------	-------	----------

- 1. Prove or disprove that every compact Hausdorff space is normal.
- 2. A metric space is called **complete** if every Cauchy sequence converges. The metric is called a complete metric. Prove or disprove the following: Let (X,d) be a metric space. Then there is a complete metric \bar{d} on X so that (X,\bar{d}) is homemorphic to (X,d).
- 3. Let $f: X \to Y$ be a continuous map from a topological space X into another topological space Y. Under what additional conditions, can one prove that f is uniformly continuous? Note that one wants those conditions to be **optimum** to make a clean result without being too trivial. State the definition of being uniformly continuous and an appropriate theorem under the additional conditions, and also prove the theorem.
- 4. Prove or disprove:
 - (a) If A is a nowhere dense subset of X, then X A is dense. Note that A is said to be **nowhere dense** in X if \overline{A} contains no nonempty open set of X, where \overline{A} is the closure of A in X.
 - (b) If $A \subset X$ and X A is dense in X, then A is a nowhere dense subset of X.
 - (c) Suppose A is a compact subset of X. Then \overline{A} is compact.
 - (d) Let $f: X \longrightarrow Y$ be a continuous function from a compact space X to a Hausdorff space Y. Then f is a closed function.
- 5. Let X and Y are homeomorphic topological spaces. Prove or disprove the following.
 - (a) Any one-to-one function from X onto Y is a homeomorphism.
 - (b) Any continuous one-to-one function from X onto Y is a homeomorphism.
- 6. If a non-compact topological space X is embedded as a dense subset in a compact topological space X^* , X^* is called a compactification of X. When the complement $X^* X$ consists of n points, X^* is called an n-point compactification.
 - 1) Give an outline for constructing a two point compactification of \mathbb{R}^2 with the standard topology.
 - 2) Prove or disprove that two points compactifications (if there are more than one) of \mathbb{R}^2 with the standard topology are unique up to homeomorphisms.