- 1. For $a \in \mathbf{Z}/n\mathbf{Z}$, let $\pi_a: \mathbf{Z}/n\mathbf{Z} \to \mathbf{Z}/n\mathbf{Z}$ by $\pi_a(x) = x + a$. This is a permutation on $\mathbf{Z}/n\mathbf{Z}$.
 - (a) Compute the order of π_a as a permutation. Your answer will depend on n and a.
 - (b) Determine when π_a is an even permutation. Your answer will depend on n and a.
- 2. State and prove the Eisenstein criterion for polynomials in $\mathbf{Z}[X]$.
- 3. Let R be a commutative ring and define J to be the intersection of all maximal ideals of R.
 - (a) Prove that J is an ideal.
 - (b) Let $a \in J$. Prove that for all $b \in R$, the element 1 ab is invertible.
- 4. Let F_1, \ldots, F_n be fields, where $n \ge 2$, and set $A = F_1 \times \cdots \times F_n$ (the product ring). For any subset S of $\{1, \ldots, n\}$, let

$$I_S = \{ (x_1, \dots, x_n) \in A : x_i = 0 \text{ for } i \in S \},\$$

so in particular $I_{\emptyset} = A$ and $I_{\{1,\dots,n\}} = \{\mathbf{0}\}$. (Smaller S make larger I_S .)

- (a) Prove I_S is an ideal in A and describe the ring A/I_S in terms of a product of fields.
- (b) For any $\mathbf{x} = (x_1, \dots, x_n) \in A$, describe the principal ideal $A\mathbf{x}$ in terms of the coordinates of \mathbf{x} .
- (c) Show every ideal in A has the form I_S for some subset S of $\{1, \ldots, n\}$.
- 5. Let G be a finite group which acts on a set X.
 - (a) Let $N = \{g \in G : gx = x \text{ for all } x \in X\}$. Show N is the largest normal subgroup of G contained in the stabilizer subgroup of each point in X.
 - (b) If the action has one orbit, show for any two points x and y in X that their stabilizer subgroups are conjugate.
 - (c) Let $G = S_3$ be the permutation group on 3 elements. Give two examples of actions of G on itself where
 - (i) there is only one orbit,
 - (ii) there is more than one orbit and the conclusion of part (b) is false.

Provide a brief explanation of why your answers to (i) and (ii) fit the conditions.

- 6. Give examples as requested, with brief justification.
 - (a) A nonabelian group of order 27.
 - (b) A prime element of $\mathbf{Z}[i]$.
 - (c) A cyclic group with exactly 8 generators.
 - (d) A free module (over some ring), and a nonzero submodule which is not free.