Name:

Math $5410 \quad$ Prelim \quad August, 7, 2009

Choose 5 out of the 6 questions.
(1a) State and prove an existence and uniqueness theorem for the equation $\frac{d^{2} x}{d t^{2}}+f(x)=0$ with initial conditions $x(0)=a$ and $x^{\prime}(0)=b$ under the assumption that f and its partial derivatives are continuous. (You can assume the Contraction Mapping Theorem).
(1b) Let $a=b=f(0)=0$ in part (a). Can $x(t)=t^{3}$ be a solution to part (a)? Explain.
(2a) Find the Green's function $G(x, y)$ for the operator A where

$$
A u=-u^{\prime \prime}+u
$$

with $u^{\prime}(0)=u^{\prime}(1)=0$.
(2b) Define $T: L^{2}(0,1) \rightarrow L^{2}(0,1)$ such that for any $f \in L^{2}(0,1)$,

$$
(T f)(x)=\int_{0}^{1} G(x, y) f(y) d y
$$

Explain what spectral theorem is and why it is applicable.
(2c) Show that $\|T\|=\max \{|\lambda|: \lambda$ is an eigenvalue of T$\}$.
(2d) Compute $\|T\|$. (hint: find eigenvalues of A).
(3) Let

$$
U(x, y)= \begin{cases}1, & \text { if } 0 \leq x \leq 1, y \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Compute its distributive derivative $D_{x y} U$ in $\mathbf{R}^{\mathbf{2}}$.
(4) Let H be a Hilbert space and $K: H \rightarrow H$ is a linear, bounded, compact operator. Define $A=I+K$. Show that if A is injective, then it is surjective.
(5) Let H be a Hilbert space and $A: H \rightarrow H$ is compact. Show that
(a) $x_{n} \rightharpoonup x$ weakly implies $A x_{n} \rightarrow A x$.
(b) The operator norm of A is attained.
(6a) Let K be a closed convex set in a Hilbert space X. Let $x \in X$ and let y be the point of K closest to x. Prove that $\mathcal{R} e\langle x-y, v-y\rangle \leq 0$ for all $v \in K$, where $\mathcal{R} e$ denotes the real part.
(6b) For each x in X, we use $P x$ to denote the point of K closest to x. Using part (a) or otherwise, prove that

$$
\|P x-P z\| \leq\|x-z\|
$$

