Complex Analysis Preliminary Exam

August 2009

Instructions:

- (i) Complete all problems. Give full justifications for all answers in the exam booklet.
- (ii) The complex numbers are denoted \mathbb{C} , the real numbers \mathbb{R} , and the natural numbers \mathbb{N} .
 - The letter *z* is used for complex numbers, the letters *x* and *y* are real numbers, and the letter *n* is a natural number.
 - The open unit disc is denoted $\mathbb{D} = \{z : |z| < 1\}.$
- 1. Evaluate the following integral, justifying all steps. The number *a* is real and positive.

$$\int_0^\infty \frac{\cos ax}{(1+x^2)^2} \, dx$$

- 2. (i) Determine, with proof, the number of zeros of $f(z) = z^3 z + \frac{1}{10}e^z$ in the disc |z| < 2.
 - (ii) Suppose that $\{f_n(z)\}\$ is a sequence of functions, each of which is analytic on the closure of \mathbb{D} and has exactly one zero in \mathbb{D} . If the sequence f_n converges uniformly on the closure of \mathbb{D} to a function f, must it be the case that f has exactly one zero in \mathbb{D} ? Give a proof or a counterexample.
- 3. (i) Show there is no non-constant bounded analytic function on $\mathbb{C} \setminus \{0\}$.
 - (ii) Show there is no non-constant bounded analytic function on $\mathbb{C} \setminus \mathbb{N}$.
 - (iii) Give an example of a non-constant bounded analytic function on $\mathbb{C} \setminus [0, \infty)$.
- 4. Let f be analytic and satisfy $|f(z)| \le 1$ on \mathbb{D} , and suppose that f(0) = f'(0) = 0. Prove that $|f''(0)| \le 2$ and describe the functions having |f''(0)| = 2.
- 5. Show that the following function on \mathbb{R}^2 is harmonic and compute a harmonic conjugate.

$$u(x, y) = x^{3} + 2xy - 2x^{2} - 3xy^{2} + 2y^{2}$$

6. Let \mathcal{F} be a set of functions that are analytic on \mathbb{D} and satisfy f(0) = 1 for all $f \in \mathcal{F}$. Let $\mathcal{F}' = \{f'(z) : f \in \mathcal{F}\}$. Show that \mathcal{F} is a normal family if and only if \mathcal{F}' is normal.