Complex Analysis Preliminary Exam

August 2009

Instructions:

(i) Complete all problems. Give full justifications for all answers in the exam booklet.
(ii) - The complex numbers are denoted \mathbb{C}, the real numbers \mathbb{R}, and the natural numbers \mathbb{N}.

- The letter z is used for complex numbers, the letters x and y are real numbers, and the letter n is a natural number.
- The open unit disc is denoted $\mathbb{D}=\{z:|z|<1\}$.

1. Evaluate the following integral, justifying all steps. The number a is real and positive.

$$
\int_{0}^{\infty} \frac{\cos a x}{\left(1+x^{2}\right)^{2}} d x
$$

2. (i) Determine, with proof, the number of zeros of $f(z)=z^{3}-z+\frac{1}{10} e^{z}$ in the disc $|z|<2$.
(ii) Suppose that $\left\{f_{n}(z)\right\}$ is a sequence of functions, each of which is analytic on the closure of \mathbb{D} and has exactly one zero in \mathbb{D}. If the sequence f_{n} converges uniformly on the closure of \mathbb{D} to a function f, must it be the case that f has exactly one zero in \mathbb{D} ? Give a proof or a counterexample.
3. (i) Show there is no non-constant bounded analytic function on $\mathbb{C} \backslash\{0\}$.
(ii) Show there is no non-constant bounded analytic function on $\mathbb{C} \backslash \mathbb{N}$.
(iii) Give an example of a non-constant bounded analytic function on $\mathbb{C} \backslash[0, \infty)$.
4. Let f be analytic and satisfy $|f(z)| \leq 1$ on \mathbb{D}, and suppose that $f(0)=f^{\prime}(0)=0$. Prove that $\left|f^{\prime \prime}(0)\right| \leq 2$ and describe the functions having $\left|f^{\prime \prime}(0)\right|=2$.
5. Show that the following function on \mathbb{R}^{2} is harmonic and compute a harmonic conjugate.

$$
u(x, y)=x^{3}+2 x y-2 x^{2}-3 x y^{2}+2 y^{2}
$$

6. Let \mathcal{F} be a set of functions that are analytic on \mathbb{D} and satisfy $f(0)=1$ for all $f \in \mathcal{F}$. Let $\mathcal{F}^{\prime}=\left\{f^{\prime}(z): f \in \mathcal{F}\right\}$. Show that \mathcal{F} is a normal family if and only if \mathcal{F}^{\prime} is normal.
