Measure and Integration (Math 5111) Aug 2009 Qualifying Exam

ID:
Last: \qquad First: \qquad

- Do Problem 5 and any three (complete, not combinations of parts) of Problems 1-4. Mark on this form the problem NOT to be graded.
- Results proved in the textbook/s (Folland, Royden, Rudin or Dudley) should be applied without proof. In this case you have to state accurately the result you are using.
- Below m denotes the Lebesgue measure on \mathbb{R}.

1. (a) Suppose that $\left\{\mu_{n}: n \in \mathbb{N}\right\}$ is a sequence of σ-finite measures on the measurable space (X, \mathcal{F}). For $A \in \mathcal{F}$ let $\nu(A)=\sum_{n=1}^{\infty} \mu_{n}(A)$. Prove that ν is a measure on (X, \mathcal{F}).
(b) Let ν be the measure from part (a). Prove that one can write $\nu=\sum_{n=1}^{\infty} \rho_{n}$, where $\left\{\rho_{n}: n \in \mathbb{N}\right\}$ is a sequence of measures on (X, \mathcal{F}) satisfying all of the following
(i) For all $n \in \mathbb{N}, \rho_{n} \ll \mu_{n}$;
(ii) If $n>1$, then $\rho_{k} \perp \rho_{n}$ for all $k<n$;
(iii) For all $n \in \mathbb{N}, \frac{d \rho_{n}}{d \nu} \in\{0,1\}, \nu$-almost everywhere.
2. (a) Let (X, \mathcal{F}, μ) be a measure space. Suppose that $\left\{f_{n}: n \in \mathbb{N}\right\}$ is a sequence of functions in $L^{1}(X, \mathcal{F}, \mu)$ which satisfy $\left|f_{n}\right| \leq h$ for some $h \in L^{1}(X, \mathcal{F}, \mu)$ and $\lim _{n \rightarrow \infty} f_{n}=f$ in measure. Prove that $\lim _{n \rightarrow \infty} \int\left|f_{n}-f\right| d \mu=0$.
(b) Suppose $f:[0, \infty) \rightarrow[0, \infty)$ is a three times differentiable nonnegative function, which satisfies $f(0)=f^{\prime}(0)=0$. Assume further that $f^{\prime \prime}(0)>0$ and $f^{(3)} \geq 0$. Prove

$$
\lim _{M \rightarrow \infty} \sqrt{M} \int_{[0, \infty)} e^{-M f(x)} d m=\frac{c}{\sqrt{f^{\prime \prime}(0)}}, \text { where } c=\int_{[0, \infty)} e^{-\zeta^{2} / 2} d m(\zeta)=\sqrt{\frac{\pi}{2}}
$$

3. Let $f \in L^{1}(X, \mathcal{F}, \mu)$ and assume further $\mu(X)<\infty$. Consider the function

$$
g(c)=\int|f(x)-c| d \mu
$$

(a) Prove that g is absolutely continuous on \mathbb{R} and $\lim _{|c| \rightarrow \infty} g(c)=\infty$.
(b) Find $g^{\prime}(c)$, and prove that $g\left(c_{0}\right)=\min _{c \in \mathbb{R}} g(c)$ if and only if $\mu\left(\left\{x: f(x)<c_{0}\right\}\right)=\mu(\{x: f(x)>$ $\left.c_{0}\right\}$) (such a c_{0} is called a median).
4. (a) Assume that f an absolutely continuous function on \mathbb{R} satisfying $f(0)=0$ and $f^{\prime} \in L^{p}(m)$ for some $p>1$. Prove that for all $g \in L^{q}(m)$, we have

$$
\int_{0}^{1}|f g| d m \leq\left(\frac{1}{p}\right)^{1 / p}\left(\int_{0}^{1}\left|f^{\prime}\right|^{p} d m\right)^{1 / p}\left(\int_{0}^{1}|g|^{q} d m\right)^{1 / q}
$$

Here q is the conjugate exponent $\frac{1}{p}+\frac{1}{q}=1$.
(Hint: use the assumptions on f to express it in terms of f^{\prime})
(b) State and prove the analog of the inequality of part (a) for the case $p=1$.
5. True/False. Determine whether each of the above is true or false (not always true). In the former case, prove. In the latter case, provide a counterexample.

Note: the parts are not related.
(a) The function

$$
f(x)= \begin{cases}\frac{1}{q} & x=p / q, p \in \mathbb{Z}_{+}, q \in \mathbb{N} \text { are relatively prime } \\ 0 & \text { otherwise }\end{cases}
$$

is Riemann integrable on $[0,1]$.
(b) Suppose f is a measurable function on the product measure space $(X \times Y, \mathcal{F} \times \mathcal{G}, \mu \times \nu)$, and that both iterated integrals $\int_{Y} \int_{X} f(x, y) d \mu(x) d \nu(y), \int_{Y} \int_{X} f(x, y) d \nu(y) d \mu(x)$ are well defined, finite and equal to 0 . Then $f \in L^{1}(\mu \times \nu)$.
(c) Suppose that the sequence of measurable functions $\left\{f_{n}: n \in \mathbb{N}\right\}$ satisfies $\lim _{n \rightarrow \infty} \int f_{n} g d m=0$ for all $g \in L^{1}(m)$. Then $\lim _{n \rightarrow \infty} f_{n}=0$ in measure.
(d) Suppose that (X, \mathcal{F}, μ) is a finite measure space. Then $1 \leq p_{1}<p_{2}$ implies $L^{p_{1}}(\mu) \supset L^{p_{2}}(\mu)$.
(e) If $\left\{f_{n}: n \in \mathbb{N}\right\}$ is a sequence of nonnegative Lebesgue-measurable functions then $\lim \sup _{n \rightarrow \infty} \int f_{n} d m \leq$ $\int \lim \sup _{n \rightarrow \infty} f_{n} d m$.

