1. Set $\mathbf{Z}[\sqrt{11}]=\{a+b \sqrt{11}: a, b \in \mathbf{Z}\}$.
(a) Show $a+b \sqrt{11}$ is a unit in $\mathbf{Z}[\sqrt{11}]$ if and only if $a^{2}-11 b^{2}= \pm 1$.
(b) Show there is no integral solution to $a^{2}-11 b^{2}=-1$.
2. Let G be an abelian group and H be a subgroup with finite index. For any integer $n \geq 1$, the inclusion $H \rightarrow G$ and the reduction $G \rightarrow G / n G$ compose to give a homomorphism $H \rightarrow G / n G$. This homomorphism kills $n H$, so it induces a homomorphism $f_{n}: H / n H \rightarrow G / n G$ given by $f_{n}(h \bmod n H)=h \bmod n G$.
(a) Whenever $(n,[G: H])=1$, show f_{n} is an isomorphism.
(b) Whenever $(n,[G: H])>1$, show f_{n} is not surjective.
3. Let S_{n} be the symmetric group on n letters ($n \geq 2$). Then every element of S_{n} can be written as a product of cycles.
(a) Write an arbitrary cycle $\left(i_{1} i_{2} \ldots i_{m}\right), m \geq 2$, as a product of transpositions.
(b) Show that S_{n} is generated by the $n-1$ transpositions (12), (13), $\ldots,(1 n)$.
(c) Show that S_{n} is generated by the $n-1$ transpositions (12), (23), $\ldots,(n-1 n)$.
4. (a) In $\mathbf{Q}[x, y]$, prove that (x) is a prime ideal and not a maximal ideal.
(b) In $\mathbf{Q}[x, y]$, prove that (x, y) is a maximal ideal.
(c) In $\mathbf{Q}[x]$, prove that $\left(x^{2}-2\right)$ is a maximal ideal and that neither $\left(x^{2}\right)$ nor $\left(x^{2}-4\right)$ is a prime ideal.
5. Let A be a nonzero ring such that $a^{2}=a$ for all $a \in A$. (Examples include $\mathbf{Z} / 2 \mathbf{Z} \times \cdots \times \mathbf{Z} / 2 \mathbf{Z}$, but these are not the only ones.)
(a) Show A has characteristic 2 .
(b) If A is finite, show its size is a power of 2 .
(c) Show any prime ideal in A is maximal.
6. Give examples as requested, with brief justification.
(a) Four nonisomorphic groups of order 8.
(b) A nontrivial character of the group $(\mathbf{Z} / 12 \mathbf{Z})^{\times}$.
(c) A torsion-free \mathbf{Z}-module which is not a free \mathbf{Z}-module. (Torsion-free means no element v satisifes $n v=0$ for some nonzero integer n except for $v=0$.)
(d) Three nonisomorphic $\mathbf{C}[x]$-modules which are each 2 -dimensional as \mathbf{C}-vector spaces.
