Abstract Algebra Prelim

- 1. Set $\mathbf{Z}[\sqrt{11}] = \{a + b\sqrt{11} : a, b \in \mathbf{Z}\}.$
 - (a) Show $a + b\sqrt{11}$ is a unit in $\mathbb{Z}[\sqrt{11}]$ if and only if $a^2 11b^2 = \pm 1$.
 - (b) Show there is no integral solution to $a^2 11b^2 = -1$.
- 2. Let G be an abelian group and H be a subgroup with finite index. For any integer $n \ge 1$, the inclusion $H \to G$ and the reduction $G \to G/nG$ compose to give a homomorphism $H \to G/nG$. This homomorphism kills nH, so it induces a homomorphism $f_n \colon H/nH \to G/nG$ given by $f_n(h \mod nH) = h \mod nG$.
 - (a) Whenever (n, [G:H]) = 1, show f_n is an isomorphism.
 - (b) Whenever (n, [G:H]) > 1, show f_n is not surjective.
- 3. Let S_n be the symmetric group on n letters $(n \ge 2)$. Then every element of S_n can be written as a product of cycles.
 - (a) Write an arbitrary cycle $(i_1 i_2 \dots i_m), m \ge 2$, as a product of transpositions.
 - (b) Show that S_n is generated by the n-1 transpositions $(12), (13), \ldots, (1n)$.
 - (c) Show that S_n is generated by the n-1 transpositions (12), (23), ..., (n-1 n).
- 4. (a) In $\mathbf{Q}[x, y]$, prove that (x) is a prime ideal and not a maximal ideal.
 - (b) In $\mathbf{Q}[x, y]$, prove that (x, y) is a maximal ideal.
 - (c) In $\mathbf{Q}[x]$, prove that $(x^2 2)$ is a maximal ideal and that neither (x^2) nor $(x^2 4)$ is a prime ideal.
- 5. Let A be a nonzero ring such that $a^2 = a$ for all $a \in A$. (Examples include $\mathbb{Z}/2\mathbb{Z} \times \cdots \times \mathbb{Z}/2\mathbb{Z}$, but these are not the only ones.)
 - (a) Show A has characteristic 2.
 - (b) If A is finite, show its size is a power of 2.
 - (c) Show any prime ideal in A is maximal.
- 6. Give examples as requested, with brief justification.
 - (a) Four nonisomorphic groups of order 8.
 - (b) A nontrivial character of the group $(\mathbf{Z}/12\mathbf{Z})^{\times}$.
 - (c) A torsion-free **Z**-module which is not a free **Z**-module. (Torsion-free means no element v satisfies nv = 0 for some nonzero integer n except for v = 0.)
 - (d) Three nonisomorphic $\mathbf{C}[x]$ -modules which are each 2-dimensional as \mathbf{C} -vector spaces.