Math 5120
 Preliminary Exam in Complex Analysis
 August 2010

1. Characterize all those analytic functions defined in the unit disc Δ with the property that, for all $a, b \in \Delta, f(a b)=f(a) f(b)$.
2. Prove that there does not exist a 1-1 analytic function mapping an annulus onto a punctured disc.
3. Evaluate $\int_{|z|=1} \frac{z^{11}}{12 z^{12}-4 z^{9}+2 z^{6}-4 z^{3}+1} d z$ and justify all steps. Hint: one of the ways to approach this problem is to make the change of variable $w=\frac{1}{z}$.
4. Suppose the sequence $\left\{f_{n}\right\}$ of 1-1 analytic functions converges uniformly on compact subsets of a region Ω to a function f. Show that f is analytic, and is either constant or is also 1-1.
5. Let Ω be a bounded, simply connected domain in the plane. Suppose $g: \Omega \rightarrow \Omega$ is holomorphic and not the identity. Show that g can have at most one fixed point.
(a) First show it when Ω is the unit disc. Then
(b) Show it when Ω is a bounded, simply connected region in the plane.
6. Evaluate the integral $\int_{0}^{\infty} \frac{\log x}{x^{2}+a^{2}} d x$ where a is real and positive.
7. Prove that if f is a non-constant entire function then $f(\mathbb{C})$ is dense in \mathbb{C}. (You cannot just quote Picard's Theorem.)
