Measure and Integration Aug 2010 Qualifying Exam

- Answer all problems.
- State clearly what results you rely on.
- Notation: (X, \mathcal{F}, μ) denotes a measure space; *m* denotes the Lebesgue measure on \mathbb{R} .
- 1. A sequence $(f_n : n \in \mathbb{N})$ of functions in $L^1(\mu)$ is called Uniformly Integrable (UI) if

$$\lim_{\epsilon \searrow 0} \sup_{\{A \in \mathcal{F} : \mu(A) < \epsilon\}} \int_A |f_n| d\mu = 0.$$

Assume that $\mu(X) < \infty$, and let $(f_n : n \in \mathbb{N})$ be a sequence of real-valued \mathcal{F} -measurable functions converging to 0, μ -a.e.

- (a) Prove that $\lim_{n\to\infty} \int |f_n| d\mu = 0$ if and only if $(f_n : n \in \mathbb{N})$ is UI. (Hint: for one implication use Egoroff's Theorem).
- (b) Consider the condition:

For every
$$\epsilon > 0$$
 there exists $A \in \mathcal{F}$ such that $0 < \mu(A) < \epsilon$. (*)

Prove the following:

- i. If (*) holds, then there exists a sequence $(g_n : n \in \mathbb{N})$ of nonnegative functions in $L^1(\mu)$ such that $\lim_{n\to\infty} g_n = 0$ μ -a.e., and $\lim_{n\to\infty} \int g_n d\mu = 0$ but there is no $g \in L^1(\mu)$ such that $\sup_{n\in\mathbb{N}} g_n(x) \leq g$, μ -a.e..
- ii. If (*) fails, we have that whenever $(g_n : n \in \mathbb{N})$ is a sequence of functions in $L^1(\mu)$ such that $\lim_{n\to\infty} g_n = 0$ μ -a.e., and $\lim_{n\to\infty} \int g_n d\mu = 0$, then there exists some $N \in \mathbb{N}$ such that $\sup_{n\geq N} g_n(x) \in L^1(\mu)$.
- 2. Let $f \in L^1(m) \cap L^{\infty}(m)$. Define a function φ on \mathbb{R} by letting

$$\varphi(x) := \int f(x-t)f(t)dm(t)$$

- (a) Prove that the integral defining φ is well-defined (that is, for each $x \in \mathbb{R}$, the function $t \to f(x-t)f(t)$, is in $L^1(m)$).
- (b) Prove that φ is continuous.
- (c) Prove that $\lim_{|x|\to\infty} \varphi(x)$ exists. Find it.
- 3. Let $\mathcal{B}_{(0,\infty)}$ denote the Borel σ -algebra on $(0,\infty)$.
 - (a) Show that there is at most one measure ν on $\mathcal{B}_{(0,\infty)}$ which satisfies the following conditions:
 - i. $\nu((1,e]) = 1$.
 - ii. ν is dilation-invariant. That is, $\nu(cA) = \nu(A)$ for every c > 0 and $A \in \mathcal{B}_{(0,\infty)}$ (here, as usual, $cA := \{ca : a \in A\}$).

(Hint: observe that $\nu((a, b]) = \nu((1, \frac{b}{a}))$ and that for any t > 1 and $l \in \mathbb{N}$, $(1, t] = \bigcup_{j=0}^{l-1} t^{j/l} (1, t^{1/l})$

- (b) Assuming that the measure from part (a) exists and is absolutely continuous with respect to the restriction of the Lebesgue measure to $\mathcal{B}_{(0,\infty)}$, find the Radon-Nikodym derivative. Was the assumption correct ?
- 4. Prove Minkowski's inequality for $L^p(\mu), p \in [1, \infty]$.