Measure and Integration Aug 2010 Qualifying Exam

- Answer all problems.
- State clearly what results you rely on.
- Notation: (X, \mathcal{F}, μ) denotes a measure space; m denotes the Lebesgue measure on \mathbb{R}.

1. A sequence $\left(f_{n}: n \in \mathbb{N}\right)$ of functions in $L^{1}(\mu)$ is called Uniformly Integrable (UI) if

$$
\lim _{\epsilon \searrow 0} \sup _{\{A \in \mathcal{F}: \mu(A)<\epsilon\}} \int_{A}\left|f_{n}\right| d \mu=0 .
$$

Assume that $\mu(X)<\infty$, and let $\left(f_{n}: n \in \mathbb{N}\right)$ be a sequence of real-valued \mathcal{F}-measurable functions converging to $0, \mu$-a.e.
(a) Prove that $\lim _{n \rightarrow \infty} \int\left|f_{n}\right| d \mu=0$ if and only if $\left(f_{n}: n \in \mathbb{N}\right)$ is UI. (Hint: for one implication use Egoroff's Theorem).
(b) Consider the condition:

$$
\begin{equation*}
\text { For every } \epsilon>0 \text { there exists } A \in \mathcal{F} \text { such that } 0<\mu(A)<\epsilon \tag{*}
\end{equation*}
$$

Prove the following:
i. If $(*)$ holds, then there exists a sequence $\left(g_{n}: n \in \mathbb{N}\right)$ of nonnegative functions in $L^{1}(\mu)$ such that $\lim _{n \rightarrow \infty} g_{n}=0 \mu$-a.e., and $\lim _{n \rightarrow \infty} \int g_{n} d \mu=0$ but there is no $g \in L^{1}(\mu)$ such that $\sup _{n \in \mathbb{N}} g_{n}(x) \leq g, \mu$-a.e. .
ii. If $(*)$ fails, we have that whenever $\left(g_{n}: n \in \mathbb{N}\right)$ is a sequence of functions in $L^{1}(\mu)$ such that $\lim _{n \rightarrow \infty} g_{n}=0 \mu$-a.e., and $\lim _{n \rightarrow \infty} \int g_{n} d \mu=0$, then there exists some $N \in \mathbb{N}$ such that $\sup _{n \geq N} g_{n}(x) \in L^{1}(\mu)$.
2. Let $f \in L^{1}(m) \cap L^{\infty}(m)$. Define a function φ on \mathbb{R} by letting

$$
\varphi(x):=\int f(x-t) f(t) d m(t)
$$

(a) Prove that the integral defining φ is well-defined (that is, for each $x \in \mathbb{R}$, the function $t \rightarrow$ $f(x-t) f(t)$, is in $\left.L^{1}(m)\right)$.
(b) Prove that φ is continuous.
(c) Prove that $\lim _{|x| \rightarrow \infty} \varphi(x)$ exists. Find it.
3. Let $\mathcal{B}_{(0, \infty)}$ denote the Borel σ-algebra on $(0, \infty)$.
(a) Show that there is at most one measure ν on $\mathcal{B}_{(0, \infty)}$ which satisfies the following conditions:
i. $\nu((1, e])=1$.
ii. ν is dilation-invariant. That is, $\nu(c A)=\nu(A)$ for every $c>0$ and $A \in \mathcal{B}_{(0, \infty)}$ (here, as usual, $c A:=\{c a: a \in A\})$.
(Hint: observe that $\nu((a, b])=\nu\left(\left(1, \frac{b}{a}\right]\right)$ and that for any $t>1$ and $\left.l \in \mathbb{N},(1, t]=\bigcup_{j=0}^{l-1} t^{j / l}\left(1, t^{1 / l}\right]\right)$
(b) Assuming that the measure from part (a) exists and is absolutely continuous with respect to the restriction of the Lebesgue measure to $\mathcal{B}_{(0, \infty)}$, find the Radon-Nikodym derivative. Was the assumption correct?
4. Prove Minkowski's inequality for $L^{p}(\mu), p \in[1, \infty]$.

