Choose 5 out of the 6 questions.

(1a) Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$. Establish the parallelogram law, i.e., for all $x, y \in H$, one has:

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

(1b) Let K be a non-empty closed convex set in H. Show that for any $x \in H$, there exists a unique point $y \in K$ such that

$$
\|x-y\|=\operatorname{dist}(x, K)
$$

(hint: use (a) to show a sequence $\left\{y_{n}\right\}$ that attains $\operatorname{dist}(x, K)$ is a Cauchy sequence).
(1c) Let $x \in X$ and let y be the point of K closest to x as in (b). Prove that $\langle x-y, v-y\rangle \leq 0$ for all $v \in K$.
(2a) Find the Green's function $G(x, y)$ for the operator A where

$$
A u=-u^{\prime \prime}+u
$$

with $u(0)=u^{\prime}(1)=0$.
(2b) Define $T: L^{2}(0,1) \rightarrow L^{2}(0,1)$ such that for any $f \in L^{2}(0,1)$,

$$
(T f)(x)=\int_{0}^{1} G(x, y) f(y) d y
$$

Explain what spectral theorem is and why it is applicable.
(2c) Show that $\|T\|=\max \{|\lambda|: \lambda$ is an eigenvalue of $T\}$.
(2d) Compute $\|T\|$. (hint: find eigenvalues of A).
(3) Let $k>0$ and $u: \mathbf{R}^{3} \backslash\{0\} \rightarrow \mathbf{R}$ defined by

$$
u(x) \equiv-\frac{1}{4 \pi|x|} e^{-k|x|}
$$

It is spherically symmetric, i.e. $u(x)=w(|x|)$ where $w: \mathbf{R} \rightarrow \mathbf{R}$ is given by $w(r)=-\frac{1}{4 \pi r} e^{-k r}$.
(a) For a spherical symmetric function in \mathbf{R}^{3}, it is known that

$$
\Delta u=\left[\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}\right] w
$$

Show that $\left(\Delta-k^{2}\right) u=0$ for $x \neq 0$.
(b) Show that the distribution \tilde{u} is a fundamental solution of the Helmholtz operator $\Delta-k^{2}$, i.e.

$$
\left(\Delta-k^{2}\right) \tilde{u}=\delta
$$

(hint: the proof is similar to that for $k=0$ when we deal with the Laplacian operator).
(4) Let H be a Hilbert space and $A: H \rightarrow H$ is compact.
(a) Give the definition that A is compact.
(b) Let $\left\{u_{n}\right\}$ be an orthonormal sequence in a Hilbert space and let $\left\{\lambda_{n}\right\}$ be a bounded sequence in \mathbf{R}. Prove that the operator $A x=\sum \lambda_{n}\left\langle x, u_{n}\right\rangle u_{n}$ is compact if and only if $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$.
(5a) Suppose f is an operator from a Banach space X to itself. Give the definition of f being Frechet differentiable at a point $x \in X$.
(5b) Show that the Frechet derivative, if exists, is unique.
(5c) Let $f: C[0,1] \rightarrow C[0,1]$ such that for any $g \in C[0,1], t \in[0,1]$,

$$
(f(g))(t) \equiv\left(\int_{0}^{1}(g(\xi))^{2} d \xi\right) \sin t
$$

Prove that f is differentiable at any g and find a formula for f^{\prime}.
(5d) Given a bounded seqeunce $\left\{g_{n}\right\} \subset C[0,1]$, does $\left\{f\left(g_{n}\right)\right\}$ have a convergent subsequence? (i.e. is f a nonlinear compact operator?)
(6) Let

$$
f(x)= \begin{cases}1, & \text { if }|x|<\frac{1}{2} \\ 0, & \text { otherwise }\end{cases}
$$

Define $f_{n}(x)=n f(n x)$ for all $x \in \mathbf{R}$. Let \tilde{f}_{n} be the distribution induced by f_{n}.
(a) Show that $\tilde{f}_{n} \rightarrow \delta$ in the distribution sense. Here δ is the delta function.
(b) Evaluate the distribution derivative $D \tilde{f}_{n}$ and find its limit.

