August 12, 2011

2011 Complex Prelim

 Δ is the open unit disk; ∂D is the boundary of the domain D; \mathbb{C} is the complex plane and $\hat{\mathbb{C}}$ is the Riemann sphere (i.e. the extended complex plane); $\mathcal{O} = \mathcal{O}(D)$ is the set of function holomorphic (or equivalently analytic) in the domain D.

Justify your reasoning in all problems.

(1) Evaluate the following integral:

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} \, dx$$

This problem requires more than just a calculation. Justify all steps, including all the estimates and taking limits that are needed.

(2) Suppose

$$D := \{ z \in \mathbb{C} : |z - i| < \sqrt{2} \text{ and } |z + i| < \sqrt{2} \}.$$

- (a) Prove that there is no conformal map of D onto \mathbb{C} .
- (b) If there is one, find a conformal map of D to the unit disk Δ . If none exists, prove it.
- (3) Prove that the Fundamental Theorem of Algebra is a direct consequence of Rouché's Theorem.
- (4) (a) Suppose f is holomorphic in $\Delta \setminus \{0\}$. What consequence would follow if $|z^2 f(z)|$ is bounded?
 - (b) Consider a family of functions that are holomorphic on $\Delta \setminus \{0\}$ and for which there is a uniform bound for $|z^2 f(z)|$ on $\Delta \setminus \{0\}$. Is this family normal?
- (5) Consider all functions f which are holomorphic for Re(z) > 0, take values in Δ , and vanish at z = 1. What is the least upper bound for |f(2)|? Is it achieved?