1. Let p and q be prime numbers such that $p<q$ and $q \not \equiv 1 \bmod p$. Show every group of order $p q$ is abelian. (In fact it is cyclic, but it is not required to show that.)
2. Let G be a group.
(a) For a nonempty subset S of G, define what the subgroup of G generated by S is.
(b) For each positive integer n, let H_{n} be the subgroup of G generated by the nth powers of elements of G. Prove $H_{n} \triangleleft G$.
3. Let R be a commutative ring and M and N be R-modules. There are R-module homomorphisms $i: M \rightarrow M \oplus N$ and $j: N \rightarrow M \oplus N$ given by $i(m)=(m, 0)$ and $j(n)=(0, n)$.
(a) Prove the universal mapping property of the direct sum of M and N : for any R-module P and any R-module homomorphisms $f: M \rightarrow P$ and $g: N \rightarrow P$, there exists exactly one R-module homomorphism $h: M \oplus N \rightarrow P$ such that $h \circ i=f$ and $h \circ j=g$.
(b) Prove that the universal mapping property in part (a) characterizes $M \oplus N$ up to isomorphism: if there is an R-module U and R-module homomorphisms $i_{U}: M \rightarrow U$ and $j_{U}: N \rightarrow U$ such that U, i_{U}, j_{U} have the universal mapping property of $M \oplus N, i, j$ in part (a), then there is a unique R-module isomorphism $\varphi: M \oplus N \rightarrow U$ such that $\varphi \circ i=i_{U}$ and $\varphi \circ j=j_{U}$.
4. (a) Define a Euclidean domain.
(b) Prove that every Euclidean domain is a PID.
(c) Let F be a field and $a(x)$ and $b(x)$ be polynomials such that neither divides the other. Let $g(x)$ be the greatest common divisor of $a(x)$ and $b(x)$. (You can normalize $g(x)$ to have leading coefficient 1 , although that isn't important.) Show there are nonzero $u(x)$ and $v(x)$ in $F[x]$ such that

- $a(x) u(x)+b(x) v(x)=g(x)$,
- $\operatorname{deg} u<\operatorname{deg} b$ and $\operatorname{deg} v<\operatorname{deg} a$.

5. Let p be a prime number and $f(x)$ be a polynomial in $\mathbf{Z}[x]$. Prove that the ideal $(p, f(x))$ in $\mathbf{Z}[x]$ is maximal if and only if the reduction $f(x) \bmod p$ is irreducible in $(\mathbf{Z} /(p))[x]$.
6. Give examples as requested, with brief justification.
(a) A nontrivial character of $\mathbf{Z} /(9)$.
(b) A polynomial $f(x)$ such that $\left(x^{2}-x, x^{2}-1\right)=(f(x))$ in $\mathbf{Q}[x]$.
(c) A basis of the vector space of 2×2 real matrices with trace 0 .
(d) An integral domain that is not a unique factorization domain.
