Name:

Math $5410 \quad$ Prelim \quad August, 23, 2013
(1) State and prove an existence theorem for the equation $\frac{d x}{d t}+f(x)=0$ with initial conditions $x(0)=0$ and $x^{\prime}(0)=0$ under the assumption that f is continuous and $|f| \leq r$. (You can assume Rothe's fixed point theorem.).
(2a) Find the Green's function $G(x, y)$ for the operator A where

$$
A u=u^{\prime \prime}-u
$$

with $u^{\prime}(0)=u(1)=0$.
If $A u=f(x)$, express the function u in terms of G and f.
(2b) Define $T: L^{2}(0,1) \rightarrow L^{2}(0,1)$ such that for any $f \in L^{2}(0,1)$,

$$
(T f)(x)=\int_{0}^{1} G(x, y) f(y) d y
$$

Explain what the spectral theorem is and why it is applicable.
(2c) Show that $\|T\|=\max \{|\lambda|: \lambda$ is an eigenvalue of $T\}$.
(2d) Compute $\|T\|$. (hint: find eigenvalues of A).
(3) Let

$$
U(x, y)=\ln \left(x^{2}+y^{2}\right)
$$

Compute distributionally $\Delta U=\left(\partial_{x}^{2}+\partial_{y}^{2}\right) U$ in \Re^{2}.
(4) Let H be a Hilbert space and $K: H \rightarrow H$ is a linear, bounded, compact operator. Define $A=I+K$. Show that if A is surjective, then it is injective.
(5) Let $J: H_{0}^{1}(\Omega) \rightarrow \Re$ be defined by

$$
J(u)=\int_{\Omega}\left(|\nabla u|^{2} / 2+u^{4} / 4-h u\right) d v
$$

for h fixed in $L^{2}(\Omega)$ where Ω is a bounded region in \Re^{3}.
(a)Find the Frechet derivative of J.
(b) Show that $\inf J$ is attained. You may use the fact that $H_{0}^{1}(\Omega)$ is compactly embedded in $L^{t}(\Omega)$ for $t<6$ and that $\int_{\Omega}|\nabla u|^{2} d V$ is a norm on $H_{0}^{1}(\Omega)$

