Below m denotes the Lebesgue measure on \mathbb{R} .

- 1. (a) State the dominated convergence theorem (DCT)
 - (b) Recall the bounded convergence theorem (BCT)

Suppose that μ is a **finite** measure. Let $f, (f_n : n \in \mathbb{N})$ be measurable functions satisfying that $\sup_n ||f_n||_{\infty} < \infty$ and $\lim_{n\to\infty} f_n = f \mu$ -a.e. Then $\int f_n d\mu \to \int f d\mu$.

Clearly, DCT \Rightarrow BCT. Prove the converse.

(Hint: A fast way to solve this problem, but maybe not the only way, is by change of measure.)

- 2. Suppose that $w \in L^1(m)$ has the property that $\int w\varphi dm = 0$ for all $\varphi \in L^{\infty}(m) \cap L^1(m)$ satisfying $\int \varphi dm = 0$. Show that $w \equiv 0$, *m*-a.e.
- 3. Let F be of bounded variation, and let dF denote the corresponding signed measure. Prove that if φ is a continuous function with compact support and continuous derivative, then

$$\int F\varphi' dm = -\int \varphi dF.$$

4. Show that on \mathbb{R} , if f is continuous at x = 1 and $g \in L^1(m)$, then for every $\alpha \in (-\infty, 1)$,

$$\int_{-n^{\alpha}}^{n^{\alpha}} f(1+x/n)g(x)dm(x)$$

converges as $n \to \infty$. Show by example that this integral may not converge for $\alpha = 1$.

5. Let q_1, q_2, \ldots be an enumeration of rationals in [0, 1]. Consider the infinite series

$$s(x) = \sum_{n=1}^{\infty} \frac{1}{n^2 \sqrt{|x - q_n|}}$$

- (a) Prove that s converges m-a.e.
- (b) Prove that s is unbounded on any non-empty open subinterval of [0, 1].