Complex Functions Prelim, August 2014.

Below \mathbb{D} denotes the disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.
In all cases the word "analytic" is used interchangeably with "holomorphic".

1. Suppose $h(x, y)$ is harmonic on \mathbb{D} and has no zeros. Let $g(x, y)$ be its harmonic conjugate. Show that

$$
f(x, y)=\log \left((h(x, y))^{2}+(g(x, y))^{2}\right)
$$

is harmonic on \mathbb{D}. (Hint: you are not intended to compute lots of derivatives.)
2. Find the number of zeros of the function $f(z)=2 z^{5}+8 z-1$ in the annulus $1<|z|<2$.
3. Suppose $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ is analytic in $\{z:|z|<R\}$ and continuous in $\{z:|z| \leq R\}$, and let $M=\max _{|z| \leq R}|f(z)|$. Show that $\left|a_{n}\right| R^{n} \leq M$ for all n, and, more generally, $\sum_{0}^{\infty}\left|a_{n}\right|^{2} R^{2 n} \leq M^{2}$. (Hint: For the latter consider $\int_{|z|=R}|f(z)|^{2} \frac{d z}{z}$.)
4. Let \mathcal{F} be a family of holomorphic functions on \mathbb{D} so that for any $f \in \mathcal{F}$,

$$
\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)+|f(0)| \leq 1,
$$

for all $z \in D$. Prove that \mathcal{F} is a normal family on \mathbb{D}.
5. Suppose that f and g are analytic on \mathbb{D} and satisfy

$$
f(z)=z^{3} g(z)-z .
$$

(a) If you know $f(\mathbb{D}) \subset \mathbb{D}$ show that $g(z) \equiv 0$.
(b) If instead you know $f(\mathbb{D}) \supset \mathbb{D}$ and f is injective on \mathbb{D}, show that this also implies $g(z) \equiv 0$. (Hint: It may help to consider the inverse of f.)
6. Suppose f is an entire function that satisfies an equation of the form

$$
\sum_{j=1}^{n} p_{j}(z)(f(z))^{j}=0
$$

where the coefficients $p_{j}(z)$ are non-zero polynomials. Show that f is a polynomial.
Hints: There is an elegant proof using the Casorati-Weierstrass theorem. Alternatively, it may help to prove one or both of the following:
(a) If f is entire but it not a polynomial then for any $k \in \mathbb{N}$ there is a sequence $z_{l} \rightarrow \infty$ for which $z_{l}^{-k} f\left(z_{l}\right) \rightarrow \infty$.
(b) There is a $k \in \mathbb{N}$ and a number M such that if $|z| \geq M$ and $|w| \geq 1$ then $\sum_{j} p_{j}(z) z^{k j} w^{j}$ cannot be zero.

