Complex Functions Prelim, August 2014.

Below \mathbb{D} denotes the disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. In all cases the word "analytic" is used interchangeably with "holomorphic".

1. Suppose h(x, y) is harmonic on \mathbb{D} and has no zeros. Let g(x, y) be its harmonic conjugate. Show that

$$f(x,y) = \log\left(\left(h(x,y)\right)^2 + \left(g(x,y)\right)^2\right)$$

is harmonic on \mathbb{D} . (Hint: you are not intended to compute lots of derivatives.)

- 2. Find the number of zeros of the function $f(z) = 2z^5 + 8z 1$ in the annulus 1 < |z| < 2.
- 3. Suppose $f(z) = \sum_{0}^{\infty} a_n z^n$ is analytic in $\{z : |z| < R\}$ and continuous in $\{z : |z| \le R\}$, and let $M = \max_{|z| \le R} |f(z)|$. Show that $|a_n|R^n \le M$ for all n, and, more generally, $\sum_{0}^{\infty} |a_n|^2 R^{2n} \le M^2$. (Hint: For the latter consider $\int_{|z|=R} |f(z)|^2 \frac{dz}{z}$.)
- 4. Let \mathcal{F} be a family of holomorphic functions on \mathbb{D} so that for any $f \in \mathcal{F}$,

$$|f'(z)|(1-|z|^2) + |f(0)| \le 1,$$

for all $z \in D$. Prove that \mathcal{F} is a normal family on \mathbb{D} .

5. Suppose that f and g are analytic on \mathbb{D} and satisfy

$$f(z) = z^3 g(z) - z.$$

- (a) If you know $f(\mathbb{D}) \subset \mathbb{D}$ show that $g(z) \equiv 0$.
- (b) If instead you know $f(\mathbb{D}) \supset \mathbb{D}$ and f is injective on \mathbb{D} , show that this also implies $g(z) \equiv 0$. (*Hint: It may help to consider the inverse of f.*)
- 6. Suppose f is an entire function that satisfies an equation of the form

$$\sum_{j=1}^{n} p_j(z) \left(f(z) \right)^j = 0$$

where the coefficients $p_j(z)$ are non-zero polynomials. Show that f is a polynomial.

Hints: There is an elegant proof using the Casorati-Weierstrass theorem. Alternatively, it may help to prove one or both of the following:

- (a) If f is entire but it not a polynomial then for any $k \in \mathbb{N}$ there is a sequence $z_l \to \infty$ for which $z_l^{-k} f(z_l) \to \infty$.
- (b) There is a $k \in \mathbb{N}$ and a number M such that if $|z| \geq M$ and $|w| \geq 1$ then $\sum_{j} p_{j}(z) z^{kj} w^{j}$ cannot be zero.