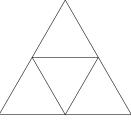
- 1. Let \mathcal{D} denote the topology on \mathbb{Z} generated by sets of the form $\{2n 1, 2n, 2n + 1\}$, $n \in \mathbb{Z}$. Prove:
 - (a) Given two distinct elements in \mathbb{Z} , then there exists a \mathcal{D} -neighborhood of one which does not contain the other, yet $(\mathbb{Z}, \mathcal{D})$ is not Hausdorff.
 - (b) $(\mathbb{Z}, \mathcal{D})$ is connected.
- 2. Let A and B be subsets of a topological space X so that $A \bigcup B$ and $A \cap B$ are connected. Prove that if A and B are closed, then both A and B are connected.
- 3. Let $X \subset \mathbb{R}^2$ be the subspace in the figure on the right, and let A denote the top vertex of the external triangle. Use Van-Kampen's Theorem to find $\pi_1(X, A)$.



4. Let $\mathbb{D} = \{z \in \mathbb{C} : |z| \leq 1\}$, and let ~ be the equivalence relation on \mathbb{D} , given by

$$z_1 \sim z_2 \Leftrightarrow \begin{cases} z_1 = e^{i\theta_1}, z_2 = e^{i\theta_2}, \ \theta_1, \theta_2 \in [0, 2\pi) \text{ and } 3(\theta_2 - \theta_1) \equiv 0 \mod 2\pi \\ z_1 = z_2 \text{ otherwise} \end{cases}$$

Compute $\pi_1(\mathbb{D}/\sim, [1])$, where [1] is the equivalence class of $1 \in \mathbb{C}$ with respect to \sim . (Recall Euler's formula: $e^{i\theta} = \cos \theta + i \sin \theta$).

- 5. (a) Define: (\tilde{X}, p) is a covering space of a topological space X.
 - (b) Find a simply connected covering space for the subspace of \mathbb{R}^3 given by the union of a sphere and its diameter.