Qualifying Exam

1. Let $A=x x^{T}$ for $x \in \mathbb{R}^{N}, x \neq 0$. Show that the rank of the matrix A is 1 .
2. Determine the polynomial of degree at most $n-1$ which best approximates the polynomial

$$
Q(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}
$$

on the interval $[a, b]$ and show that its maximum deviation from Q is given by

$$
\frac{1}{2^{n-1}}\left(\frac{b-a}{2}\right)^{n} a_{0}
$$

3. Consider the function $f(x)=e^{\lambda x}, \lambda \in \mathbb{R}$, on an interval $[a, b]$. Show that the error $f-p_{n}$ for the Lagrange interpolation of f over uniformly distributed $n+1$ points from $[a, b]$ uniformly converges to zero as $n \rightarrow \infty$, i.e.

$$
\max _{x \in[a, b]}\left|f(x)-p_{n}(x)\right| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty,
$$

What distinguishes this function from $f(x)=\left(1+x^{2}\right)^{-1}$, for which the Lagrange interpolation does not converge uniformly as $n \rightarrow \infty$?
4. Derive a Gaussian quadrature formula such that the integral

$$
I=\int_{-1}^{1} p(x) \sqrt{|x|} d x
$$

computes exactly for all cubic polynomials $p(x)$.
5. Consider the linear system

$$
A x=\left(\begin{array}{ll}
0.5 & 0.5 \\
0.5 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{1}{1}
$$

How big the relative errors $\|\delta x\|_{1} /\|x\|_{1}$ and $\|\delta x\|_{\infty} /\|x\|_{\infty}$ can be when the relative error of the matrix is at most $\pm 1 \%$ and the right hand side $\pm 3 \%$? (Hint: Compute the inverse of the matrix and determine the 1 -and ∞-condition numbers, i.e. $\kappa_{1}(A)$ and $\kappa_{\infty}(A)$.)
6. Show that if f is twice continuously differentiable, then the Newton's method converges locally quadratically towards the root \bar{x}, i.e.

$$
\frac{\left\|x_{n+1}-\bar{x}\right\|}{\left\|x_{n}-\bar{x}\right\|^{2}} \leq C \quad \text { as } \quad n \rightarrow \infty
$$

Show that if f is only once continuously differentiable, then the Newton's method converges locally super-linearly towards the root \bar{x}, i.e.

$$
\frac{\left\|x_{n+1}-\bar{x}\right\|}{\left\|x_{n}-\bar{x}\right\|} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

i.e. faster than simple fixed point iteration.

