Real Analysis Prelim, August 2014

Notation: \mathcal{L} is the Lebesgue σ -algebra of subsets of \mathbb{R} , m is the Lebesgue measure on \mathcal{L} , and the term "Borel measurable" refers to the Borel σ -algebra on \mathbb{R} .

1. For every $a, b \in \mathbb{R}$ let $L_{a,b} : \mathbb{R} \to \mathbb{R}$ be the function $L_{a,b}(x) = ax + b$. Suppose $f : \mathbb{R} \to \mathbb{R}$ is bounded from below and define a set $A \subset \mathbb{R}^2$ and a function $\overline{f} : \mathbb{R} \to \mathbb{R}$ by

$$A = \{(a,b) \in \mathbb{R}^2 : L_{a,b}(z) \le f(z) \text{ for all } z \in \mathbb{R}\}, \qquad \overline{f}(x) = \sup_{(a,b) \in A} L_{a,b}(x)$$

Note that the function \overline{f} is called the convex minorant of f, the largest convex function less than or equal to f. Prove that \overline{f} is Borel measurable.

2. (a) Prove that $\lim_{n \to \infty} \sum_{j=0}^{n} x^{j-j^2/2n} = \frac{1}{1-x}$ for 0 < x < 1. Hint: fix x and use the dominated convergence theorem

Hint: fix x and use the dominated convergence theorem for the series as an integral over non-negative integers with respect to the counting measure (integrate functions that have j as the variable).

(b) Compute $\lim_{n \to \infty} \int_{[0,1]} \sqrt{\sum_{j=0}^{n} x^{j-j^2/2n}} dm(x).$

Hint: again use the dominated convergence theorem, but this time for the integral over the unit interval with respect to m.

- 3. Let μ be a measure on \mathcal{L} , defined by $\mu(A) = \int_{A \cap (0,\infty)} \frac{1}{y} dm(y)$. Suppose that $f, g \in L^1(\mu)$. Let $H(x) = \int_0^\infty f(x/y)g(y)d\mu(y)$. Prove the following:
 - (a) The integral above defining H exists μ -a.e., H is measurable, and $H \in L^{1}(\mu)$

(b)
$$H(x) = \int_{0}^{\infty} g(x/y)f(y)d\mu(y).$$

- 4. Let $p_1, p_2 \in (1, \infty)$.
 - (a) Find $r = r(p_1, p_2) \in (0, \infty)$ such that $(fg)^r \in L^1(m)$ whenever $f \in L^{p_1}(m)$ and $g \in L^{p_2}(m)$.
 - (b) Show that if $r' \neq r(p_1, p_2)$, then there exist nonnegative $f \in L^{p_1}(m)$ and $g \in L^{p_2}(m)$ such that $(fg)^{r'} \notin L^1(m)$.
- 5. (a) Define: $f:[0,1] \to \mathbb{R}$ is absolutely continuous.
 - (b) Prove that $f:[0,1] \to \mathbb{R}$ is absolutely continuous if and only if it is continuous, bounded variation, and whenever $A \in \mathcal{L}$ and m(A) = 0, then $f(A) \in \mathcal{L}$ and m(f(A)) = 0. Here f(A) is the image of the set A under the function f.