Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

1. Let R be a commutative ring (with identity) and I and J be ideals in R such that $I+J=R$.
(a) Prove $R /(I \cap J) \cong R / I \times R / J$ as commutative rings ("Chinese remainder theorem").
(b) Prove $I J=I \cap J$, where $I J$ is defined to be the ideal in R generated by the set of products $x y$ where $x \in I$ and $y \in J$.

Be sure to use the condition $I+J=R$ in both (a) and (b); neither part is true in general without that.
2. Let G be a finite group and p be an odd prime number such that

- every nontrivial element of G has order either 2 or p,
- there are elements of both orders 2 and p,
- there is a unique subgroup of order p.

Letting $a \in G$ have order 2 and $b \in G$ have order p, prove $a b a^{-1}=b^{-1}$ and every element of G is $b^{i} a^{j}$ where $0 \leq i \leq p-1$ and $0 \leq j \leq 1$. (Thus G has order $2 p$. Do not assume that.)
3. Let G be a group whose subgroups are totally ordered by inclusion: for all subgroups H and K, either $H \subset K$ or $K \subset H$.
(a) Prove every element of G has finite order.
(b) Prove G is abelian. (This part does not depend on the previous one.)
(c) If G is not trivial, prove the order of every element is a power of the same prime number.
4. Let F be a field. Using the fact that the polynomial ring $F[x]$ is a PID, prove that the Laurent polynomial ring $F[x, 1 / x]=F[x][1 / x]=\left\{\sum_{n=a}^{b} c_{n} x^{n}: a \leq b\right.$ in $\left.\mathbf{Z}, c_{n} \in F\right\}$ is a PID.
5. (a) State the classification of finitely generated abelian groups.
(b) In \mathbf{Z}^{3} let $H=\mathbf{Z}(2,2,6)+\mathbf{Z}(2,6,2)$. Describe the structure of the quotient group \mathbf{Z}^{3} / H using the classification from part a.
6. Give examples as requested, with brief justification.
(a) A finite group G that is generated by its subset of cubes $\left\{g^{3}: g \in G\right\}$ but not all elements of G are cubes.
(b) A commutative ring R (with identity) and ideals I and J in R such that $I+J \neq R$ and $I J \neq I \cap J$.
(c) A 2×2 real matrix without any real eigenvectors.
(d) The statement of a theorem whose proof uses Zorn's lemma.

