Topology Prelim, August 2015

Problem 1. Let X be a topological space and let A be a subset of X. Either prove the following statement, or give a counter-example.

- 1. If A is connected, then the closure \overline{A} is connected.
- 2. If A is connected, then its interior Int(A) is connected.

Problem 2. Define the equivalence relation on \mathbb{R} such that $x \sim y$ if x - y is rational. Let \mathbb{R}/\sim be the quotient space with the quotient topology. Show that \mathbb{R}/\sim is not Hausdorff.

Problem 3. Let X, Y be topological spaces. Assume that Y is Hausdorff. Let $f, g: X \to Y$ be continuous functions. Suppose that there exists a dense subset D of X such that f(x) = g(x) for all $x \in D$. Prove that f(x) = g(x)for all $x \in X$.

Problem 4. A topological space X is said to be *contractible* if the identity map $Id_X : X \to X$ is null-homotopic, i.e. homotopic to a constant map.

- 1. Show that any convex subset of \mathbb{R}^n is contractible.
- 2. Let Y be a topological space. Show that if X is contractible, then any map $f: X \to Y$ is null-homotopic.

Problem 5. Let E, X be topological spaces. Assume that E is connected. Let $q: E \to X$ be a covering map with $q^{-1}(x)$ finite and non-empty for all $x \in X$. Show that E is compact if and only if X is compact.

Problem 6. Let $n \geq 3$. Suppose that M is a connected *n*-dimensional manifold, and $p \in M$. Show that the inclusion $M \setminus \{p\} \hookrightarrow M$ induces an isomorphism between their fundamental groups $\pi_1(M \setminus \{p\}) \cong \pi_1(M)$.