Probability Prelim Exam for Actuarial Students August 2015

- 1. (10 points) Let X and Y be independent random variables. Let $f, g : \mathbf{R} \to \mathbf{R}$ be Borelmeasurable functions. Show that the random variables f(X) and g(Y) are independent.
- 2. (20 points) Let (Ω, \mathscr{F}, P) be a probability space. Let $A_n \in \mathscr{F}$ for $n = 1, 2, \ldots$ Show that
 - (a) (10 points) If $\sum_{n=1}^{\infty} P(A_n) < \infty$, then

$$P\left(\limsup_{n} A_n\right) = 0.$$

(b) (10 points) If $\sum_{n=1}^{\infty} P(A_n) = \infty$ and A_1, A_2, \ldots are independent, then

$$P\left(\limsup_{n} A_n\right) = 1.$$

3. (10 points) Let X be a non-negative random variable on a probability space (Ω, \mathscr{F}, P) . Show that for all $\alpha > 0$,

$$P(X \ge \alpha) \le \frac{E[X]}{\alpha}.$$

4. (10 points) Let $X, X_1, X_2, \ldots, Y_1, Y_2, \ldots$ be random variables on a defined probability space. Show that if $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} c$, for some constant c, then

$$X_n + Y_n \xrightarrow{d} X + c,$$

where \xrightarrow{d} means convergence in distribution.

5. (10 points) Let X and Y be two random variable in a probability space (Ω, \mathscr{F}, P) . Suppose that X and Y are independent. Show that

$$E(Y|X) = E(Y), \quad a.s.$$

6. (10 points) Let $\{X_n\}$ be a submartingale. Let τ_1 and τ_2 be stopping times. Suppose that $0 \le \tau_1 \le \tau_2 \le M$ almost surely for some positive integer M. Show that

$$E(X_{\tau_2}) \ge E(X_{\tau_1}).$$