Real Analysis Preliminary Exam, August 2015

Instructions and notation:

(i) Complete all problems. Give full justifications for all answers in the exam booklet.
(ii) Lebesgue measure on \mathbb{R} is denoted by m or $d m$, or by $d x$ or $d y$. The complement of a set E is denoted by E^{c}.

1. (10 points) Compute

$$
\int_{0}^{\infty} \int_{0}^{\sqrt{\pi} / 2} e^{-y / x} \cos \left(x^{2}\right) d x d y
$$

Justify all steps in your computation.
2. (10 points) Suppose $h(x) \in L^{p}(m)$ on \mathbb{R} and $1<p<\infty$. Prove that, when $q<(p-1) / p$,

$$
I(h)=\int_{0}^{1} \frac{h(x)}{x^{q}} d x<\infty .
$$

Also, for any $q \geq(p-1) / p$ give an example of a non-negative function $h \in L^{p}$ such that $I(h)=\infty$.
3. (10 points) Let f and $\left\{f_{n}\right\}_{n=1}^{\infty}$ be measurable functions, and suppose that for any $\epsilon>0$ we have

$$
\sum_{1}^{\infty} \mu\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}<\infty .
$$

Prove that f_{n} converges to $f \mu$-a.e.
4. (20 points) Let f be a Lebesgue integrable function on \mathbb{R} such that $\int_{I} f d m=0$ whenever I is an open interval.
(i) Prove that $\int_{U} f d m=0$ if U is any open set.
(ii) Show that $\int_{E} f d m=0$ if E is any Lebesgue measurable set.
(iii) Show that $f=0$ a.e. with respect to m.
(iv) Let g be an integrable function supported on [0, 1], and suppose that for all $k \in \mathbb{N} \cup\{0\}$,

$$
\int x^{n} g(x) d x=0
$$

Prove that $g=0$ a.e. with respect to Lebesgue measure. (Hint: approximate the characteristic function of a bounded interval by polynomials.)
5. (20 points) Let K_{n} be the $n^{\text {th }}$ set in the construction of the usual $1 / 3$-Cantor set. This means that $K_{0}=[0,1]$, and for each n the set K_{n+1} is a union of closed intervals obtained by deleting the open middle third of each interval from K_{n}. Also, for each n, let $\mu_{n}=\left.\left(\frac{3}{2}\right)^{n} m\right|_{K_{n}}$, meaning that for any Lebesgue measurable set $A, \mu_{n}(A)=$ $\left(\frac{3}{2}\right)^{n} m\left(A \cap K_{n}\right)$.
(i) Prove that $K=\cap_{n} K_{n}$ is compact and non-empty.
(ii) Prove that $m(K)=0$.
(iii) Let $F_{n}(x)=\mu_{n}((-\infty, x])$, so F_{n} is increasing and has $F_{n}(x)=0$ for $x \leq 0$ and $F_{n}(x)=1$ for $x \geq 1$. Prove that F_{n} is absolutely continous with respect to Lebesgue measure and find its Radon-Nikodym derivative.
(iv) Prove that F_{n} is constant on the intervals in K_{n}^{c} and that its value on the $j^{\text {th }}$ interval is j^{2-n}
(v) Prove that the sequence $\left\{F_{n}(x)\right\}$ converges uniformly (with respect to x) as $n \rightarrow \infty$, to an increasing continuous function $F(x)$ on $[0,1]$.
(vi) Define μ to be the Lebesgue-Stieltjes measure corresponding to F, so $\mu((a, b])=F(b)-F(a)$. Prove that μ and m are mutually singular.
(vii) Prove that $\mu_{n}(A) \rightarrow \mu(A)$ as $n \rightarrow \infty$ if A is a closed interval, but that this is not true for arbitrary closed sets.

