Instructions and notation:

- (i) Complete all problems. Give full justifications for all answers in the exam booklet.
- (ii) Lebesgue measure on \mathbb{R} is denoted by *m* or *dm*, or by *dx* or *dy*. The complement of a set *E* is denoted by E^c .
- 1. (10 points) Compute

$$\int_0^\infty \int_0^{\sqrt{\pi}/2} e^{-y/x} \cos(x^2) \, dx \, dy.$$

Justify all steps in your computation.

2. (10 points) Suppose $h(x) \in L^p(m)$ on \mathbb{R} and 1 . Prove that, when <math>q < (p-1)/p,

$$I(h) = \int_0^1 \frac{h(x)}{x^q} \, dx < \infty.$$

Also, for any $q \ge (p-1)/p$ give an example of a non-negative function $h \in L^p$ such that $I(h) = \infty$.

3. (10 points) Let f and $\{f_n\}_{n=1}^{\infty}$ be measurable functions, and suppose that for any $\epsilon > 0$ we have

$$\sum_{1}^{\infty} \mu\{x : |f_n(x) - f(x)| > \epsilon\} < \infty.$$

Prove that f_n converges to $f \mu$ -a.e.

- 4. (20 points) Let f be a Lebesgue integrable function on \mathbb{R} such that $\int_{I} f \, dm = 0$ whenever I is an open interval.
 - (i) Prove that $\int_U f \, dm = 0$ if U is any open set.
 - (ii) Show that $\int_E f \, dm = 0$ if E is any Lebesgue measurable set.
 - (iii) Show that f = 0 a.e. with respect to *m*.
 - (iv) Let g be an integrable function supported on [0, 1], and suppose that for all $k \in \mathbb{N} \cup \{0\}$,

$$\int x^n g(x) \, dx = 0$$

Prove that g = 0 a.e. with respect to Lebesgue measure. (*Hint: approximate the characteristic function of a bounded interval by polynomials.*)

- 5. (20 points) Let K_n be the n^{th} set in the construction of the usual 1/3-Cantor set. This means that $K_0 = [0, 1]$, and for each n the set K_{n+1} is a union of closed intervals obtained by deleting the open middle third of each interval from K_n . Also, for each n, let $\mu_n = (\frac{3}{2})^n m|_{K_n}$, meaning that for any Lebesgue measurable set A, $\mu_n(A) = (\frac{3}{2})^n m(A \cap K_n)$.
 - (i) Prove that $K = \bigcap_n K_n$ is compact and non-empty.
 - (ii) Prove that m(K) = 0.
 - (iii) Let $F_n(x) = \mu_n((-\infty, x])$, so F_n is increasing and has $F_n(x) = 0$ for $x \le 0$ and $F_n(x) = 1$ for $x \ge 1$. Prove that F_n is absolutely continous with respect to Lebesgue measure and find its Radon-Nikodym derivative.
 - (iv) Prove that F_n is constant on the intervals in K_n^c and that its value on the j^{th} interval is $j2^{-n}$
 - (v) Prove that the sequence $\{F_n(x)\}$ converges uniformly (with respect to x) as $n \to \infty$, to an increasing continuous function F(x) on [0, 1].
 - (vi) Define μ to be the Lebesgue-Stieltjes measure corresponding to *F*, so $\mu((a, b]) = F(b) F(a)$. Prove that μ and *m* are mutually singular.
 - (vii) Prove that $\mu_n(A) \to \mu(A)$ as $n \to \infty$ if A is a closed interval, but that this is not true for arbitrary closed sets.