Probability Prelim Exam for Actuarial Students August 2016

Instructions

- (a). The exam is closed book and closed notes.
- (b). Answers must be justified whenever possible in order to earn full credit.
- (c). Points will be deducted for incoherent, incorrect, and/or irrelevant statements.
- 1. (10 points) For $t \in [0,1]$, we define $X_t = B_t tB_1$, where $\{B_t : t \geq 0\}$ is a standard Brownian motion.
 - (a) (5 points) Find the density of X_t .
 - (b) (5 points) Show that the density of X_t is equal to the limit of: the density of B_t conditioned on $|B_1| < 1/n$, as $n \to \infty$.
- 2. (20 points) A monkey is typing randomly the keys in a keyboard with only 10 digits: $0,1,2,\ldots,9$. Let the sequence of digits typed by the monkey be denoted by

$$r_1, r_2, \ldots$$

Assume that the monkey types each of the ten digits with equal chance.

- (a) (10 points) For $n=1,2,\ldots$, at time n a new player appears and bets \$1 on that $r_n=2$. If the player wins, he gets \$10 (\$9 award plus the original \$1) and then bets the \$10 on that $r_{n+1}=0$. If the player wins again, he gets \$100 (\$90 award plus the original \$10) and then bets the \$100 on $r_{n+2}=1$. If the player wins again, he gets \$1,000 (\$900 award plus the original \$100) and then bets the \$1,000 on that $r_{n+3}=6$. If the player wins again, he gets \$10,000 (\$9,000 award plus the original \$1,000) and stops betting. If the player loses at any time, he stops betting. Let S_n be the total amount won by all players by time n and $S_0=0$. Show that $\{S_n: n \geq 0\}$ is a martingale.
- (b) (10 points) Let τ be the first time when the monkey types the sequence "2016." Compute $E[\tau]$.
- 3. (10 points) Let X be a real-valued random variable. Suppose that

$$E\left[3^X\right] = 9.$$

Show that

$$P(X \ge 3) \le \frac{1}{3}.$$

4. (10 points) Let $\delta > 0$. Let X_1, X_2, \ldots be a sequence of independent non-negative random variables such that

$$P(X_i \ge \delta) \ge \frac{1}{i}, \quad i = 1, 2, \dots$$

Show that $\sum_{i=1}^{\infty} X_i = \infty$ with probability one.

Probability Prelim Exam for Actuarial Students August 2016

5. (10 points) Let X_1, X_2, \ldots be a sequence of independent random variables, each having the same mean m and each having the same variance $\leq v < \infty$. Let $\epsilon > 0$. Show that

$$\lim_{n \to \infty} P\left(\left| \frac{\sum_{i=1}^{n} X_i}{n} - m \right| \ge \epsilon \right) = 0$$

6. (10 points) Let (Ω, \mathcal{F}, P) be a probability space, where $\Omega = \{1, 2, 3\}$, \mathcal{F} is the set of all subsets of Ω , and $P(\{\omega\}) > 0$ for all $\omega \in \Omega$. Let X and Y be random variables defined on (Ω, \mathcal{F}, P) as follows:

$$X(1) = 5$$
, $X(2) = 5$, $X(3) = 6$

and

$$Y(1) = 1, \quad Y(2) = 2, \quad Y(3) = 3.$$

- (a) (3 points) Calculate $\sigma(X)$ precisely, where $\sigma(X)$ is the σ -algebra generated by X.
- (b) (2 points) State the definition of E[Y|X].
- (c) (5 points) Let Z = E[Y|X]. Calculate (with proof) $Z(\omega)$ for each $\omega \in \Omega$.