Instructions and notation:

- (i) Complete all problems. Give full justifications for all answers in the exam booklet.
- (ii) Lebesgue measure on \mathbb{R}^n is denoted by *m* or *dx*. The σ -algebra of the Lebesgue measurable sets in \mathbb{R}^n is denoted by \mathcal{M}_n . If *A* is a set then the set of all subsets of *A* is denoted by $\mathcal{P}(A)$.
- 1. (10 points) Let (X, \mathcal{A}, μ) be a measure space.
 - (a) Define the notions of μ -a.e. convergence and convergence in measure.
 - (b) If (X, \mathcal{A}, μ) is a finite measure space prove that μ -a.e. convergence implies convergence in measure.
 - (c) Prove that (b) might fail if (X, \mathcal{A}, μ) is an infinite measure space.
- 2. (10 points) Prove or disprove the following statements.
 - (a) Hyperplanes in \mathbb{R}^n have infinite *n*-dimensional Lebesgue measure.
 - (b) $\mathcal{M}_1 \times \mathcal{M}_1 \neq \mathcal{M}_2$.
 - (c) For $0 the equivalence class of an <math>f \in L^p(\mathbb{R}, m)$ contains at most one continuous function.
- 3. (10 points) Compute

$$\lim_{j\to\infty}\int_{-j}^{j}\frac{\sin(x^{j})}{x^{j-2}}\,dx,\ j\in\mathbb{N},$$

and provide full justification for all steps in your reasoning.

- 4. (10 points) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a Lebesgue measurable function. Prove that there exists a Borel measurable function $g : \mathbb{R}^n \to \mathbb{R}$ such that g = f, *m*-a.e.
- 5. (10 points) Let μ be the counting measure in $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$. Show that if $1 \le p < q \le \infty$, then

$$||f||_{L^{\infty}(\mu)} \le ||f||_{L^{q}(\mu)} \le ||f||_{L^{p}(\mu)} \le ||f||_{L^{1}(\mu)}.$$

6. (10 points) A set $A \subset \mathbb{R}^n$ is called *porous* if for all $x \in A$ there exists some $\delta_x \in (0, 1)$ and two sequences $r_i > 0, y_i \in \mathbb{R}^n, i \in \mathbb{N}$, (both depending on x) such that $r_i \to 0$ and

$$B(y_i, \delta_x r_i) \subset B(x, r_i) \setminus A.$$

- (a) Give an example of an uncountable porous set.
- (b) Show that a Lebesgue measurable porous set has Lebesgue measure zero.